import random import numpy as np import cv2 import lmdb import torch import torch.utils.data as data import data.util as util class DownsampleDataset(data.Dataset): """ Reads an unpaired HQ and LQ image. Clips both images to the expected input sizes of the model. Produces a downsampled LQ image from the HQ image and feeds that as well. """ def __init__(self, opt): super(DownsampleDataset, self).__init__() self.opt = opt self.data_type = self.opt['data_type'] self.paths_LQ, self.paths_GT = None, None self.sizes_LQ, self.sizes_GT = None, None self.LQ_env, self.GT_env = None, None # environments for lmdb self.doCrop = self.opt['doCrop'] self.paths_GT, self.sizes_GT = util.get_image_paths(self.data_type, opt['dataroot_GT']) self.paths_LQ, self.sizes_LQ = util.get_image_paths(self.data_type, opt['dataroot_LQ']) self.data_sz_mismatch_ok = opt['mismatched_Data_OK'] assert self.paths_GT, 'Error: GT path is empty.' assert self.paths_LQ, 'LQ is required for downsampling.' if not self.data_sz_mismatch_ok: assert len(self.paths_LQ) == len( self.paths_GT ), 'GT and LQ datasets have different number of images - {}, {}.'.format( len(self.paths_LQ), len(self.paths_GT)) self.random_scale_list = [1] def _init_lmdb(self): # https://github.com/chainer/chainermn/issues/129 self.GT_env = lmdb.open(self.opt['dataroot_GT'], readonly=True, lock=False, readahead=False, meminit=False) self.LQ_env = lmdb.open(self.opt['dataroot_LQ'], readonly=True, lock=False, readahead=False, meminit=False) def __getitem__(self, index): if self.data_type == 'lmdb' and (self.GT_env is None or self.LQ_env is None): self._init_lmdb() scale = self.opt['scale'] GT_size = self.opt['target_size'] * scale # get GT image GT_path = self.paths_GT[index] resolution = [int(s) for s in self.sizes_GT[index].split('_') ] if self.data_type == 'lmdb' else None img_GT = util.read_img(self.GT_env, GT_path, resolution) if self.opt['phase'] != 'train': # modcrop in the validation / test phase img_GT = util.modcrop(img_GT, scale) if self.opt['color']: # change color space if necessary img_GT = util.channel_convert(img_GT.shape[2], self.opt['color'], [img_GT])[0] # get LQ image lqind = index % len(self.paths_LQ) LQ_path = self.paths_LQ[index % len(self.paths_LQ)] resolution = [int(s) for s in self.sizes_LQ[index].split('_') ] if self.data_type == 'lmdb' else None img_LQ = util.read_img(self.LQ_env, LQ_path, resolution) # Create a downsampled version of the HQ image using matlab imresize. img_Downsampled = util.imresize_np(img_GT, 1 / scale) assert img_Downsampled.ndim == 3 if self.opt['phase'] == 'train': H, W, _ = img_GT.shape assert H >= GT_size and W >= GT_size H, W, C = img_LQ.shape LQ_size = GT_size // scale if self.doCrop: # randomly crop rnd_h = random.randint(0, max(0, H - LQ_size)) rnd_w = random.randint(0, max(0, W - LQ_size)) img_LQ = img_LQ[rnd_h:rnd_h + LQ_size, rnd_w:rnd_w + LQ_size, :] img_Downsampled = img_Downsampled[rnd_h:rnd_h + LQ_size, rnd_w:rnd_w + LQ_size, :] rnd_h_GT, rnd_w_GT = int(rnd_h * scale), int(rnd_w * scale) img_GT = img_GT[rnd_h_GT:rnd_h_GT + GT_size, rnd_w_GT:rnd_w_GT + GT_size, :] else: img_LQ = cv2.resize(img_LQ, (LQ_size, LQ_size), interpolation=cv2.INTER_LINEAR) img_Downsampled = cv2.resize(img_Downsampled, (LQ_size, LQ_size), interpolation=cv2.INTER_LINEAR) img_GT = cv2.resize(img_GT, (GT_size, GT_size), interpolation=cv2.INTER_LINEAR) # augmentation - flip, rotate img_LQ, img_GT, img_Downsampled = util.augment([img_LQ, img_GT, img_Downsampled], self.opt['use_flip'], self.opt['use_rot']) if self.opt['color']: # change color space if necessary img_Downsampled = util.channel_convert(C, self.opt['color'], [img_Downsampled])[0] # TODO during val no definition # BGR to RGB, HWC to CHW, numpy to tensor if img_GT.shape[2] == 3: img_GT = img_GT[:, :, [2, 1, 0]] img_LQ = img_LQ[:, :, [2, 1, 0]] img_Downsampled = img_Downsampled[:, :, [2, 1, 0]] img_GT = torch.from_numpy(np.ascontiguousarray(np.transpose(img_GT, (2, 0, 1)))).float() img_Downsampled = torch.from_numpy(np.ascontiguousarray(np.transpose(img_Downsampled, (2, 0, 1)))).float() img_LQ = torch.from_numpy(np.ascontiguousarray(np.transpose(img_LQ, (2, 0, 1)))).float() # This may seem really messed up, but let me explain: # The goal is to re-use existing code as much as possible. SRGAN_model was coded to supersample, not downsample, # but it can be retrofitted. To do so, we need to "trick" it. In this case the "input" is the HQ image and the # "output" is the LQ image. SRGAN_model will be using a Generator and a Discriminator which already know this, # we just need to trick its logic into following this rules. # Do this by setting LQ(which is the input into the models)=img_GT and GT(which is the expected outpuut)=img_LQ. # PIX is used as a reference for the pixel loss. Use the manually downsampled image for this. return {'LQ': img_GT, 'GT': img_LQ, 'PIX': img_Downsampled, 'LQ_path': LQ_path, 'GT_path': GT_path} def __len__(self): return len(self.paths_GT)