from collections import OrderedDict import torch import torch.nn as nn #################### # Basic blocks #################### def act(act_type, inplace=True, neg_slope=0.2, n_prelu=1): # helper selecting activation # neg_slope: for leakyrelu and init of prelu # n_prelu: for p_relu num_parameters act_type = act_type.lower() if act_type == 'relu': layer = nn.ReLU(inplace) elif act_type == 'leakyrelu': layer = nn.LeakyReLU(neg_slope, inplace) elif act_type == 'prelu': layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope) else: raise NotImplementedError('activation layer [{:s}] is not found'.format(act_type)) return layer def norm(norm_type, nc): # helper selecting normalization layer norm_type = norm_type.lower() if norm_type == 'batch': layer = nn.BatchNorm2d(nc, affine=True) elif norm_type == 'instance': layer = nn.InstanceNorm2d(nc, affine=False) elif norm_type == 'group': layer = nn.GroupNorm(8, nc) else: raise NotImplementedError('normalization layer [{:s}] is not found'.format(norm_type)) return layer def pad(pad_type, padding): # helper selecting padding layer # if padding is 'zero', do by conv layers pad_type = pad_type.lower() if padding == 0: return None if pad_type == 'reflect': layer = nn.ReflectionPad2d(padding) elif pad_type == 'replicate': layer = nn.ReplicationPad2d(padding) else: raise NotImplementedError('padding layer [{:s}] is not implemented'.format(pad_type)) return layer def get_valid_padding(kernel_size, dilation): kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1) padding = (kernel_size - 1) // 2 return padding class ConcatBlock(nn.Module): # Concat the output of a submodule to its input def __init__(self, submodule): super(ConcatBlock, self).__init__() self.sub = submodule def forward(self, x): output = torch.cat((x, self.sub(x)), dim=1) return output def __repr__(self): tmpstr = 'Identity .. \n|' modstr = self.sub.__repr__().replace('\n', '\n|') tmpstr = tmpstr + modstr return tmpstr class ShortcutBlock(nn.Module): #Elementwise sum the output of a submodule to its input def __init__(self, submodule): super(ShortcutBlock, self).__init__() self.sub = submodule def forward(self, x): return x, self.sub def __repr__(self): tmpstr = 'Identity + \n|' modstr = self.sub.__repr__().replace('\n', '\n|') tmpstr = tmpstr + modstr return tmpstr def sequential(*args): # Flatten Sequential. It unwraps nn.Sequential. if len(args) == 1: if isinstance(args[0], OrderedDict): raise NotImplementedError('sequential does not support OrderedDict input.') return args[0] # No sequential is needed. modules = [] for module in args: if isinstance(module, nn.Sequential): for submodule in module.children(): modules.append(submodule) elif isinstance(module, nn.Module): modules.append(module) return nn.Sequential(*modules) def conv_block(in_nc, out_nc, kernel_size, stride=1, dilation=1, groups=1, bias=True, \ pad_type='zero', norm_type=None, act_type='relu', mode='CNA'): ''' Conv layer with padding, normalization, activation mode: CNA --> Conv -> Norm -> Act NAC --> Norm -> Act --> Conv (Identity Mappings in Deep Residual Networks, ECCV16) ''' assert mode in ['CNA', 'NAC', 'CNAC'], 'Wrong conv mode [{:s}]'.format(mode) padding = get_valid_padding(kernel_size, dilation) p = pad(pad_type, padding) if pad_type and pad_type != 'zero' else None padding = padding if pad_type == 'zero' else 0 c = nn.Conv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, \ dilation=dilation, bias=bias, groups=groups) a = act(act_type) if act_type else None if 'CNA' in mode: n = norm(norm_type, out_nc) if norm_type else None return sequential(p, c, n, a) elif mode == 'NAC': if norm_type is None and act_type is not None: a = act(act_type, inplace=False) # Important! # input----ReLU(inplace)----Conv--+----output # |________________________| # inplace ReLU will modify the input, therefore wrong output n = norm(norm_type, in_nc) if norm_type else None return sequential(n, a, p, c) #################### # Upsampler #################### def pixelshuffle_block(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True, \ pad_type='zero', norm_type=None, act_type='relu'): ''' Pixel shuffle layer (Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network, CVPR17) ''' conv = conv_block(in_nc, out_nc * (upscale_factor ** 2), kernel_size, stride, bias=bias, \ pad_type=pad_type, norm_type=None, act_type=None) pixel_shuffle = nn.PixelShuffle(upscale_factor) n = norm(norm_type, out_nc) if norm_type else None a = act(act_type) if act_type else None return sequential(conv, pixel_shuffle, n, a) def upconv_blcok(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True, \ pad_type='zero', norm_type=None, act_type='relu', mode='nearest'): # Up conv # described in https://distill.pub/2016/deconv-checkerboard/ upsample = nn.Upsample(scale_factor=upscale_factor, mode=mode) conv = conv_block(in_nc, out_nc, kernel_size, stride, bias=bias, \ pad_type=pad_type, norm_type=norm_type, act_type=act_type) return sequential(upsample, conv)