import torch from torch import nn as nn from models.archs.srflow_orig import thops from models.archs.srflow_orig.FlowStep import FlowStep from models.archs.srflow_orig.flow import Conv2dZeros, GaussianDiag from utils.util import opt_get class Split2d(nn.Module): def __init__(self, num_channels, logs_eps=0, cond_channels=0, position=None, consume_ratio=0.5, opt=None): super().__init__() self.num_channels_consume = int(round(num_channels * consume_ratio)) self.num_channels_pass = num_channels - self.num_channels_consume self.conv = Conv2dZeros(in_channels=self.num_channels_pass + cond_channels, out_channels=self.num_channels_consume * 2) self.logs_eps = logs_eps self.position = position self.opt = opt def split2d_prior(self, z, ft): if ft is not None: z = torch.cat([z, ft], dim=1) h = self.conv(z) return thops.split_feature(h, "cross") def exp_eps(self, logs): return torch.exp(logs) + self.logs_eps def forward(self, input, logdet=0., reverse=False, eps_std=None, eps=None, ft=None, y_onehot=None): if not reverse: # self.input = input z1, z2 = self.split_ratio(input) mean, logs = self.split2d_prior(z1, ft) eps = (z2 - mean) / self.exp_eps(logs) logdet = logdet + self.get_logdet(logs, mean, z2) # print(logs.shape, mean.shape, z2.shape) # self.eps = eps # print('split, enc eps:', eps) return z1, logdet, eps else: z1 = input mean, logs = self.split2d_prior(z1, ft) if eps is None: #print("WARNING: eps is None, generating eps untested functionality!") eps = GaussianDiag.sample(mean, logs, eps_std) #eps = GaussianDiag.sample_eps(mean.shape, eps_std) eps = eps.to(mean.device) z2 = mean + self.exp_eps(logs) * eps z = thops.cat_feature(z1, z2) logdet = logdet - self.get_logdet(logs, mean, z2) return z, logdet # return z, logdet, eps def get_logdet(self, logs, mean, z2): logdet_diff = GaussianDiag.logp(mean, logs, z2) # print("Split2D: logdet diff", logdet_diff.item()) return logdet_diff def split_ratio(self, input): z1, z2 = input[:, :self.num_channels_pass, ...], input[:, self.num_channels_pass:, ...] return z1, z2