import os.path as osp import logging import time import argparse import os import utils import utils.options as option import utils.util as util from trainer.ExtensibleTrainer import ExtensibleTrainer from data import create_dataset, create_dataloader from tqdm import tqdm import torch import torchvision if __name__ == "__main__": #### options torch.backends.cudnn.benchmark = True want_metrics = False parser = argparse.ArgumentParser() parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../options/train_imgset_structural_classifier.yml') opt = option.parse(parser.parse_args().opt, is_train=False) opt = option.dict_to_nonedict(opt) utils.util.loaded_options = opt util.mkdirs( (path for key, path in opt['path'].items() if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key)) util.setup_logger('base', opt['path']['log'], 'test_' + opt['name'], level=logging.INFO, screen=True, tofile=True) logger = logging.getLogger('base') logger.info(option.dict2str(opt)) #### Create test dataset and dataloader test_loaders = [] for phase, dataset_opt in sorted(opt['datasets'].items()): dataset_opt['dataset']['includes_labels'] = False del dataset_opt['dataset']['labeler'] test_set = create_dataset(dataset_opt) if hasattr(test_set, 'wrapped_dataset'): test_set = test_set.wrapped_dataset test_loader = create_dataloader(test_set, dataset_opt, opt) logger.info('Number of test images: {:d}'.format(len(test_set))) test_loaders.append(test_loader) model = ExtensibleTrainer(opt) gen = model.netsG['generator'] label_to_search_for = 4 for test_loader in test_loaders: test_set_name = test_loader.dataset.opt['name'] test_start_time = time.time() dataset_dir = osp.join(opt['path']['results_root'], opt['name']) util.mkdir(dataset_dir) tq = tqdm(test_loader) step = 1 for data in tq: hq = data['hq'].to('cuda') res = gen(hq) res = torch.nn.functional.interpolate(res, size=hq.shape[2:], mode="nearest") res_lbl = res[:, label_to_search_for, :, :].unsqueeze(1) res_lbl_mask = (1.0 * (res_lbl > .5))*.5 + .5 hq = hq * res_lbl_mask torchvision.utils.save_image(hq, os.path.join(dataset_dir, "%i.png" % (step,))) step += 1