import functools import math import torch import torch.nn.functional as F from torch import nn from models.archs.SPSR_arch import ImageGradientNoPadding from models.archs.SwitchedResidualGenerator_arch import ConfigurableSwitchComputer, gather_2d, SwitchModelBase from models.archs.arch_util import MultiConvBlock, ConvGnLelu, ConvGnSilu, ReferenceJoinBlock from utils.util import checkpoint # VGG-style layer with Conv(stride2)->BN->Activation->Conv->BN->Activation # Doubles the input filter count. class HalvingProcessingBlock(nn.Module): def __init__(self, filters, factor=2): super(HalvingProcessingBlock, self).__init__() self.bnconv1 = ConvGnSilu(filters, filters, norm=False, bias=False) self.bnconv2 = ConvGnSilu(filters, int(filters * factor), kernel_size=1, stride=2, norm=True, bias=False) def forward(self, x): x = self.bnconv1(x) return self.bnconv2(x) class ExpansionBlock2(nn.Module): def __init__(self, filters_in, filters_out=None, block=ConvGnSilu, factor=2): super(ExpansionBlock2, self).__init__() if filters_out is None: filters_out = int(filters_in / factor) self.decimate = block(filters_in, filters_out, kernel_size=1, bias=False, activation=True, norm=False) self.process_passthrough = block(filters_out, filters_out, kernel_size=3, bias=True, activation=True, norm=False) self.conjoin = block(filters_out*2, filters_out*2, kernel_size=1, bias=False, activation=True, norm=False) self.reduce = block(filters_out*2, filters_out, kernel_size=1, bias=False, activation=False, norm=True) # input is the feature signal with shape (b, f, w, h) # passthrough is the structure signal with shape (b, f/2, w*2, h*2) # output is conjoined upsample with shape (b, f/2, w*2, h*2) def forward(self, input, passthrough): x = F.interpolate(input, scale_factor=2, mode="nearest") x = self.decimate(x) p = self.process_passthrough(passthrough) x = self.conjoin(torch.cat([x, p], dim=1)) return self.reduce(x) # Basic convolutional upsampling block that uses interpolate. class UpconvBlock(nn.Module): def __init__(self, filters_in, filters_out=None, block=ConvGnSilu, norm=True, activation=True, bias=False): super(UpconvBlock, self).__init__() self.reduce = block(filters_in, filters_out, kernel_size=1, bias=False, activation=False, norm=False) self.process = block(filters_out, filters_out, kernel_size=3, bias=bias, activation=activation, norm=norm) def forward(self, x): x = self.reduce(x) x = F.interpolate(x, scale_factor=2, mode="nearest") return self.process(x) class QueryKeyMultiplexer(nn.Module): def __init__(self, nf, multiplexer_channels, embedding_channels=216, reductions=3): super(QueryKeyMultiplexer, self).__init__() # Blocks used to create the query self.input_process = ConvGnSilu(nf, nf, activation=True, norm=False, bias=True) self.embedding_process = ConvGnSilu(embedding_channels, 128, kernel_size=1, activation=True, norm=False, bias=True) self.reduction_blocks = nn.ModuleList([HalvingProcessingBlock(int(nf * 1.5 ** i), factor=1.5) for i in range(reductions)]) reduction_filters = int(nf * 1.5 ** reductions) self.processing_blocks = nn.Sequential( ConvGnSilu(reduction_filters + 128, reduction_filters + 64, kernel_size=1, activation=True, norm=False, bias=True), ConvGnSilu(reduction_filters + 64, reduction_filters, kernel_size=1, activation=True, norm=False, bias=False), ConvGnSilu(reduction_filters, reduction_filters, kernel_size=3, activation=True, norm=True, bias=False), ConvGnSilu(reduction_filters, reduction_filters, kernel_size=3, activation=True, norm=True, bias=False)) self.expansion_blocks = nn.ModuleList([ExpansionBlock2(int(reduction_filters // (1.5 ** i)), factor=1.5) for i in range(reductions)]) # Blocks used to create the key self.key_process = ConvGnSilu(nf, nf, kernel_size=1, activation=True, norm=False, bias=False) # Postprocessing blocks. self.query_key_combine = ConvGnSilu(nf*2, nf, kernel_size=1, activation=True, norm=False, bias=False) self.cbl1 = ConvGnSilu(nf, nf // 2, kernel_size=1, norm=True, bias=False, num_groups=4) self.cbl2 = ConvGnSilu(nf // 2, 1, kernel_size=1, norm=False, bias=False) def forward(self, x, embedding, transformations): q = self.input_process(x) embedding = self.embedding_process(embedding) reduction_identities = [] for b in self.reduction_blocks: reduction_identities.append(q) q = b(q) q = self.processing_blocks(torch.cat([q, embedding], dim=1)) for i, b in enumerate(self.expansion_blocks): q = b(q, reduction_identities[-i - 1]) b, t, f, h, w = transformations.shape k = transformations.view(b * t, f, h, w) k = self.key_process(k) q = q.view(b, 1, f, h, w).repeat(1, t, 1, 1, 1).view(b * t, f, h, w) v = self.query_key_combine(torch.cat([q, k], dim=1)) v = self.cbl1(v) v = self.cbl2(v) return v.view(b, t, h, w) # Computes a linear latent by performing processing on the reference image and returning the filters of a single point, # which should be centered on the image patch being processed. # # Output is base_filters * 1.5^3. class ReferenceImageBranch(nn.Module): def __init__(self, base_filters=64): super(ReferenceImageBranch, self).__init__() final_filters = int(base_filters*1.5**3) self.features = nn.Sequential(ConvGnSilu(4, base_filters, kernel_size=7, bias=True), HalvingProcessingBlock(base_filters, factor=1.5), HalvingProcessingBlock(int(base_filters*1.5), factor=1.5), HalvingProcessingBlock(int(base_filters*1.5**2), factor=1.5), ConvGnSilu(final_filters, final_filters, activation=True, norm=True, bias=False)) # center_point is a [b,2] long tensor describing the center point of where the patch was taken from the reference # image. def forward(self, x, center_point): x = self.features(x) return gather_2d(x, center_point // 8) # Divide by 8 to scale the center_point down. class SwitchWithReference(nn.Module): def __init__(self, nf, num_transforms, init_temperature=10, has_ref=True): super(SwitchWithReference, self).__init__() self.nf = nf self.transformation_counts = num_transforms multiplx_fn = functools.partial(QueryKeyMultiplexer, nf) transform_fn = functools.partial(MultiConvBlock, nf, int(nf * 1.25), nf, kernel_size=3, depth=4, weight_init_factor=.1) if has_ref: self.ref_join = ReferenceJoinBlock(nf, residual_weight_init_factor=.3, final_norm=False, kernel_size=1, depth=2) else: self.ref_join = None self.switch = ConfigurableSwitchComputer(nf, multiplx_fn, pre_transform_block=None, transform_block=transform_fn, attention_norm=True, transform_count=self.transformation_counts, init_temp=init_temperature, add_scalable_noise_to_transforms=False, feed_transforms_into_multiplexer=True) def forward(self, x, mplex_ref=None, ref=None): if self.ref_join is not None: branch, ref_std = self.ref_join(x, ref) return self.switch(branch, identity=x, att_in=(branch, mplex_ref)) + (ref_std,) else: return self.switch(x, identity=x, att_in=(x, mplex_ref)) class SSGr1(SwitchModelBase): def __init__(self, in_nc, out_nc, nf, xforms=8, upscale=4, init_temperature=10, recurrent=False): super(SSGr1, self).__init__(init_temperature, 10000) n_upscale = int(math.log(upscale, 2)) self.nf = nf if recurrent: self.recurrent = True self.recurrent_process = ConvGnLelu(in_nc, nf, kernel_size=3, stride=2, norm=False, bias=True, activation=False) self.recurrent_join = ReferenceJoinBlock(nf, residual_weight_init_factor=.01, final_norm=False, kernel_size=1, depth=3, join=False) else: self.recurrent = False # processing the input embedding self.reference_embedding = ReferenceImageBranch(nf) # Feature branch self.model_fea_conv = ConvGnLelu(in_nc, nf, kernel_size=3, norm=False, activation=False) self.sw1 = SwitchWithReference(nf, xforms, init_temperature, has_ref=False) # Grad branch. Note - groupnorm on this branch is REALLY bad. Avoid it like the plague. self.get_g_nopadding = ImageGradientNoPadding() self.grad_conv = ConvGnLelu(in_nc, nf, kernel_size=3, norm=False, activation=False, bias=False) self.sw_grad = SwitchWithReference(nf, xforms // 2, init_temperature, has_ref=True) self.grad_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=True) self.upsample_grad = UpconvBlock(nf, nf // 2, block=ConvGnLelu, norm=False, activation=True, bias=False) self.grad_branch_output_conv = ConvGnLelu(nf // 2, out_nc, kernel_size=1, norm=False, activation=False, bias=True) # Join branch (grad+fea) self.conjoin_sw = SwitchWithReference(nf, xforms, init_temperature, has_ref=True) self.final_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=True) self.upsample = UpconvBlock(nf, nf // 2, block=ConvGnLelu, norm=False, activation=True, bias=True) self.final_hr_conv1 = ConvGnLelu(nf // 2, nf // 2, kernel_size=3, norm=False, activation=False, bias=True) self.final_hr_conv2 = ConvGnLelu(nf // 2, out_nc, kernel_size=3, norm=False, activation=False, bias=False) self.switches = [self.sw1.switch, self.sw_grad.switch, self.conjoin_sw.switch] def forward(self, x, ref, ref_center, save_attentions=True, recurrent=None): # The attention_maps debugger outputs . Save that here. self.lr = x.detach().cpu() # If we're not saving attention, we also shouldn't be updating the attention norm. This is because the attention # norm should only be getting updates with new data, not recurrent generator sampling. for sw in self.switches: sw.set_update_attention_norm(save_attentions) x_grad = self.get_g_nopadding(x) ref_code = checkpoint(self.reference_embedding, ref, ref_center) ref_embedding = ref_code.view(-1, ref_code.shape[1], 1, 1).repeat(1, 1, x.shape[2] // 8, x.shape[3] // 8) x = self.model_fea_conv(x) if self.recurrent: rec = self.recurrent_process(recurrent) x, recurrent_join_std = self.recurrent_join(x, rec) else: recurrent_join_std = 0 x1, a1 = checkpoint(self.sw1, x, ref_embedding) x_grad = self.grad_conv(x_grad) x_grad, a3, grad_fea_std = checkpoint(self.sw_grad, x_grad, ref_embedding, x1) x_grad = checkpoint(self.grad_lr_conv, x_grad) x_grad_out = checkpoint(self.upsample_grad, x_grad) x_grad_out = checkpoint(self.grad_branch_output_conv, x_grad_out) x_out, a4, fea_grad_std = checkpoint(self.conjoin_sw, x1, ref_embedding, x_grad) x_out = checkpoint(self.final_lr_conv, x_out) x_out = checkpoint(self.upsample, x_out) x_out = checkpoint(self.final_hr_conv2, x_out) if save_attentions: self.attentions = [a1, a3, a4] self.grad_fea_std = grad_fea_std.detach().cpu() self.fea_grad_std = fea_grad_std.detach().cpu() return x_grad_out, x_out, x_grad class StackedSwitchGenerator(SwitchModelBase): def __init__(self, in_nc, out_nc, nf, xforms=8, upscale=4, init_temperature=10): super(StackedSwitchGenerator, self).__init__(init_temperature, 10000) n_upscale = int(math.log(upscale, 2)) self.nf = nf # processing the input embedding self.reference_embedding = ReferenceImageBranch(nf) # Feature branch self.model_fea_conv = ConvGnLelu(in_nc, nf, kernel_size=3, norm=False, activation=False) self.sw1 = SwitchWithReference(nf, xforms, init_temperature, has_ref=False) self.sw2 = SwitchWithReference(nf, xforms, init_temperature, has_ref=False) self.sw3 = SwitchWithReference(nf, xforms, init_temperature, has_ref=False) self.switches = [self.sw1.switch, self.sw2.switch, self.sw3.switch] self.final_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=True) self.upsample = UpconvBlock(nf, nf // 2, block=ConvGnLelu, norm=False, activation=True, bias=True) self.final_hr_conv1 = ConvGnLelu(nf // 2, nf // 2, kernel_size=3, norm=False, activation=False, bias=True) self.final_hr_conv2 = ConvGnLelu(nf // 2, out_nc, kernel_size=3, norm=False, activation=False, bias=False) def forward(self, x, ref, ref_center, save_attentions=True): # The attention_maps debugger outputs . Save that here. self.lr = x.detach().cpu() ref_code = checkpoint(self.reference_embedding, ref, ref_center) ref_embedding = ref_code.view(-1, ref_code.shape[1], 1, 1).repeat(1, 1, x.shape[2] // 8, x.shape[3] // 8) x = self.model_fea_conv(x) x1, a1 = checkpoint(self.sw1, x, ref_embedding) x2, a2 = checkpoint(self.sw2, x1, ref_embedding) x3, a3 = checkpoint(self.sw3, x2, ref_embedding) x_out = checkpoint(self.final_lr_conv, x3) x_out = checkpoint(self.upsample, x_out) x_out = checkpoint(self.final_hr_conv2, x_out) if save_attentions: self.attentions = [a1, a3, a3] return x_out, class SSGDeep(SwitchModelBase): def __init__(self, in_nc, out_nc, nf, xforms=8, upscale=4, init_temperature=10, recurrent=False): super(SSGDeep, self).__init__(init_temperature, 10000) n_upscale = int(math.log(upscale, 2)) self.nf = nf # processing the input embedding if recurrent: self.recurrent = True self.recurrent_process = ConvGnLelu(in_nc, nf, kernel_size=3, stride=2, norm=False, bias=True, activation=False) self.recurrent_join = ReferenceJoinBlock(nf, residual_weight_init_factor=.01, final_norm=False, kernel_size=1, depth=3, join=False) else: self.recurrent = False self.reference_embedding = ReferenceImageBranch(nf) # Feature branch self.model_fea_conv = ConvGnLelu(in_nc, nf, kernel_size=7, norm=False, activation=False) self.sw1 = SwitchWithReference(nf, xforms, init_temperature, has_ref=False) self.sw2 = SwitchWithReference(nf, xforms, init_temperature, has_ref=False) # Grad branch. Note - groupnorm on this branch is REALLY bad. Avoid it like the plague. self.get_g_nopadding = ImageGradientNoPadding() self.grad_conv = ConvGnLelu(in_nc, nf, kernel_size=7, norm=False, activation=False, bias=False) self.sw_grad = SwitchWithReference(nf, xforms // 2, init_temperature, has_ref=True) self.grad_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=True) self.upsample_grad = UpconvBlock(nf, nf // 2, block=ConvGnLelu, norm=False, activation=True, bias=False) self.grad_branch_output_conv = ConvGnLelu(nf // 2, out_nc, kernel_size=1, norm=False, activation=False, bias=True) # Join branch (grad+fea) self.conjoin_sw = SwitchWithReference(nf, xforms, init_temperature, has_ref=True) self.sw4 = SwitchWithReference(nf, xforms, init_temperature, has_ref=False) self.final_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=True) self.upsample = UpconvBlock(nf, nf // 2, block=ConvGnLelu, norm=False, activation=True, bias=True) self.final_hr_conv1 = ConvGnLelu(nf // 2, nf // 2, kernel_size=3, norm=False, activation=False, bias=True) self.final_hr_conv2 = ConvGnLelu(nf // 2, out_nc, kernel_size=3, norm=False, activation=False, bias=False) self.switches = [self.sw1.switch, self.sw2.switch, self.sw_grad.switch, self.conjoin_sw.switch, self.sw4.switch] def forward(self, x, ref, ref_center, save_attentions=True, recurrent=None): # The attention_maps debugger outputs . Save that here. self.lr = x.detach().cpu() # If we're not saving attention, we also shouldn't be updating the attention norm. This is because the attention # norm should only be getting updates with new data, not recurrent generator sampling. for sw in self.switches: sw.set_update_attention_norm(save_attentions) x_grad = self.get_g_nopadding(x) ref_code = checkpoint(self.reference_embedding, ref, ref_center) ref_embedding = ref_code.view(-1, ref_code.shape[1], 1, 1).repeat(1, 1, x.shape[2] // 8, x.shape[3] // 8) x = self.model_fea_conv(x) if self.recurrent: rec = self.recurrent_process(recurrent) x, recurrent_std = self.recurrent_join(x, rec) x1, a1 = checkpoint(self.sw1, x, ref_embedding) x2, a2 = checkpoint(self.sw2, x1, ref_embedding) x_grad = self.grad_conv(x_grad) x_grad, a3, grad_fea_std = checkpoint(self.sw_grad, x_grad, ref_embedding, x1) x_grad = checkpoint(self.grad_lr_conv, x_grad) x_grad_out = checkpoint(self.upsample_grad, x_grad) x_grad_out = checkpoint(self.grad_branch_output_conv, x_grad_out) x3, a4, fea_grad_std = checkpoint(self.conjoin_sw, x2, ref_embedding, x_grad) x_out, a5 = checkpoint(self.sw4, x3, ref_embedding) x_out = checkpoint(self.final_lr_conv, x_out) x_out = checkpoint(self.upsample, x_out) x_out = checkpoint(self.final_hr_conv2, x_out) if save_attentions: self.attentions = [a1, a2, a3, a4, a5] self.grad_fea_std = grad_fea_std.detach().cpu() self.fea_grad_std = fea_grad_std.detach().cpu() return x_grad_out, x_out class StackedSwitchGenerator5Layer(SwitchModelBase): def __init__(self, in_nc, out_nc, nf, xforms=8, upscale=4, init_temperature=10): super(StackedSwitchGenerator5Layer, self).__init__(init_temperature, 10000) n_upscale = int(math.log(upscale, 2)) self.nf = nf # processing the input embedding self.reference_embedding = ReferenceImageBranch(nf) # Feature branch self.model_fea_conv = ConvGnLelu(in_nc, nf, kernel_size=3, norm=False, activation=False) self.sw1 = SwitchWithReference(nf, xforms, init_temperature, has_ref=False) self.sw2 = SwitchWithReference(nf, xforms // 2, init_temperature, has_ref=False) self.sw3 = SwitchWithReference(nf, xforms // 2, init_temperature, has_ref=False) self.sw4 = SwitchWithReference(nf, xforms // 2, init_temperature, has_ref=False) self.sw5 = SwitchWithReference(nf, xforms, init_temperature, has_ref=False) self.switches = [self.sw1.switch, self.sw2.switch, self.sw3.switch, self.sw4.switch, self.sw5.switch] self.final_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=True) self.upsample = UpconvBlock(nf, nf // 2, block=ConvGnLelu, norm=False, activation=True, bias=True) self.final_hr_conv1 = ConvGnLelu(nf // 2, nf // 2, kernel_size=3, norm=False, activation=False, bias=True) self.final_hr_conv2 = ConvGnLelu(nf // 2, out_nc, kernel_size=3, norm=False, activation=False, bias=False) def forward(self, x, ref, ref_center, save_attentions=True): # The attention_maps debugger outputs . Save that here. self.lr = x.detach().cpu() # If we're not saving attention, we also shouldn't be updating the attention norm. This is because the attention # norm should only be getting updates with new data, not recurrent generator sampling. for sw in self.switches: sw.set_update_attention_norm(save_attentions) ref_code = checkpoint(self.reference_embedding, ref, ref_center) ref_embedding = ref_code.view(-1, ref_code.shape[1], 1, 1).repeat(1, 1, x.shape[2] // 8, x.shape[3] // 8) x = self.model_fea_conv(x) x1, a1 = checkpoint(self.sw1, x, ref_embedding) x2, a2 = checkpoint(self.sw2, x1, ref_embedding) x3, a3 = checkpoint(self.sw3, x2, ref_embedding) x4, a4 = checkpoint(self.sw4, x3, ref_embedding) x5, a5 = checkpoint(self.sw5, x4, ref_embedding) x_out = checkpoint(self.final_lr_conv, x5) x_out = checkpoint(self.upsample, x_out) x_out = checkpoint(self.final_hr_conv2, x_out) if save_attentions: self.attentions = [a1, a3, a3, a4, a5] return x_out, class StackedSwitchGenerator2xTeco(SwitchModelBase): def __init__(self, nf, xforms=8, init_temperature=10): super(StackedSwitchGenerator2xTeco, self).__init__(init_temperature, 10000) self.nf = nf # processing the input embedding self.reference_embedding = ReferenceImageBranch(nf) # Feature branch self.model_fea_conv = ConvGnLelu(3, nf, kernel_size=7, norm=False, activation=False, bias=True) self.model_recurrent_conv = ConvGnLelu(3, nf, kernel_size=3, stride=2, norm=False, activation=False, bias=True) self.model_fea_recurrent_combine = ConvGnLelu(nf*2, nf, 1, activation=False, norm=False, bias=False) self.sw1 = SwitchWithReference(nf, xforms, init_temperature, has_ref=False) self.sw2 = SwitchWithReference(nf, xforms // 2, init_temperature, has_ref=False) self.sw3 = SwitchWithReference(nf, xforms // 2, init_temperature, has_ref=False) self.sw4 = SwitchWithReference(nf, xforms // 2, init_temperature, has_ref=False) self.sw5 = SwitchWithReference(nf, xforms, init_temperature, has_ref=False) self.switches = [self.sw1.switch, self.sw2.switch, self.sw3.switch, self.sw4.switch, self.sw5.switch] self.final_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=True) self.upsample = UpconvBlock(nf, nf // 2, block=ConvGnLelu, norm=False, activation=True, bias=True) self.final_hr_conv1 = ConvGnLelu(nf // 2, nf // 2, kernel_size=3, norm=False, activation=False, bias=True) self.final_hr_conv2 = ConvGnLelu(nf // 2, 3, kernel_size=3, norm=False, activation=False, bias=False) def forward(self, x, recurrent, ref, ref_center, save_attentions=True): # The attention_maps debugger outputs . Save that here. self.lr = x.detach().cpu() # If we're not saving attention, we also shouldn't be updating the attention norm. This is because the attention # norm should only be getting updates with new data, not recurrent generator sampling. for sw in self.switches: sw.set_update_attention_norm(save_attentions) ref_code = checkpoint(self.reference_embedding, ref, ref_center) ref_embedding = ref_code.view(-1, ref_code.shape[1], 1, 1).repeat(1, 1, x.shape[2] // 8, x.shape[3] // 8) x = self.model_fea_conv(x) rec = self.model_recurrent_conv(recurrent) x = self.model_fea_recurrent_combine(torch.cat([x, rec], dim=1)) x1, a1 = checkpoint(self.sw1, x, ref_embedding) x2, a2 = checkpoint(self.sw2, x1, ref_embedding) x3, a3 = checkpoint(self.sw3, x2, ref_embedding) x4, a4 = checkpoint(self.sw4, x3, ref_embedding) x5, a5 = checkpoint(self.sw5, x4, ref_embedding) x_out = checkpoint(self.final_lr_conv, x5) x_out = checkpoint(self.upsample, x_out) x_out = checkpoint(self.final_hr_conv2, x_out) if save_attentions: self.attentions = [a1, a3, a3, a4, a5] return x_out, class SimplePyramidMultiplexer(nn.Module): def __init__(self, nf, transforms): super(SimplePyramidMultiplexer, self).__init__() # Blocks used to create the query reductions = 3 self.input_process = ConvGnSilu(nf, nf, activation=True, norm=False, bias=True) self.reduction_blocks = nn.ModuleList([HalvingProcessingBlock(int(nf * 1.5 ** i), factor=1.5) for i in range(reductions)]) reduction_filters = int(nf * 1.5 ** reductions) self.processing_blocks = nn.Sequential( ConvGnSilu(reduction_filters, reduction_filters, kernel_size=3, activation=True, norm=True, bias=False), ConvGnSilu(reduction_filters, reduction_filters, kernel_size=3, activation=True, norm=True, bias=False)) self.expansion_blocks = nn.ModuleList([ExpansionBlock2(int(reduction_filters // (1.5 ** i)), factor=1.5) for i in range(reductions)]) self.cbl1 = ConvGnSilu(nf, nf // 2, kernel_size=1, norm=False, bias=False) self.cbl2 = ConvGnSilu(nf // 2, transforms, kernel_size=1, norm=False, bias=False) def forward(self, x): q = self.input_process(x) reduction_identities = [] for b in self.reduction_blocks: reduction_identities.append(q) q = b(q) q = self.processing_blocks(q) for i, b in enumerate(self.expansion_blocks): q = b(q, reduction_identities[-i - 1]) q = self.cbl1(q) q = self.cbl2(q) return q class SimplerSwitchWithReference(nn.Module): def __init__(self, nf, num_transforms, init_temperature=10, has_ref=True): super(SimplerSwitchWithReference, self).__init__() self.nf = nf self.transformation_counts = num_transforms multiplx_fn = functools.partial(SimplePyramidMultiplexer, nf) pretransform = functools.partial(ConvGnLelu, nf, int(nf*1.5), kernel_size=3, bias=False, norm=False, activation=True, weight_init_factor=.1) transform_fn = functools.partial(ConvGnLelu, int(nf * 1.5), int(nf * 1.5), kernel_size=3, bias=False, norm=False, activation=True, weight_init_factor=.1) posttransform = ConvGnLelu(int(nf*1.5), nf, kernel_size=3, bias=False, norm=False, activation=True, weight_init_factor=.1) if has_ref: self.ref_join = ReferenceJoinBlock(nf, residual_weight_init_factor=.3, final_norm=False, kernel_size=1, depth=2) else: self.ref_join = None self.switch = ConfigurableSwitchComputer(nf, multiplx_fn, pre_transform_block=pretransform, transform_block=transform_fn, post_transform_block=posttransform, attention_norm=True, transform_count=self.transformation_counts, init_temp=init_temperature, add_scalable_noise_to_transforms=False, feed_transforms_into_multiplexer=False) def forward(self, x, ref=None): if self.ref_join is not None: branch, ref_std = self.ref_join(x, ref) return self.switch(branch, identity=x) + (ref_std,) else: return self.switch(x, identity=x) class SsgSimpler(SwitchModelBase): def __init__(self, in_nc, out_nc, nf, xforms=8, init_temperature=10, recurrent=False): super(SsgSimpler, self).__init__(init_temperature, 10000) self.nf = nf # processing the input embedding if recurrent: self.recurrent = True self.recurrent_process = ConvGnLelu(in_nc, nf, kernel_size=3, stride=2, norm=False, bias=True, activation=False) self.recurrent_join = ReferenceJoinBlock(nf, residual_weight_init_factor=.01, final_norm=False, kernel_size=1, depth=3, join=False) else: self.recurrent = False # Feature branch self.model_fea_conv = ConvGnLelu(in_nc, nf, kernel_size=7, norm=False, activation=False) self.sw1 = SimplerSwitchWithReference(nf, xforms, init_temperature, has_ref=False) self.sw2 = SimplerSwitchWithReference(nf, xforms, init_temperature, has_ref=False) # Grad branch. Note - groupnorm on this branch is REALLY bad. Avoid it like the plague. self.get_g_nopadding = ImageGradientNoPadding() self.grad_conv = ConvGnLelu(in_nc, nf, kernel_size=7, norm=False, activation=False, bias=False) self.sw_grad = SimplerSwitchWithReference(nf, xforms // 2, init_temperature, has_ref=True) self.grad_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=True) self.upsample_grad = UpconvBlock(nf, nf // 2, block=ConvGnLelu, norm=False, activation=True, bias=False) self.grad_branch_output_conv = ConvGnLelu(nf // 2, out_nc, kernel_size=1, norm=False, activation=False, bias=True) # Join branch (grad+fea) self.conjoin_sw = SimplerSwitchWithReference(nf, xforms, init_temperature, has_ref=True) self.final_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=True) self.upsample = UpconvBlock(nf, nf // 2, block=ConvGnLelu, norm=False, activation=True, bias=True) self.final_hr_conv1 = ConvGnLelu(nf // 2, nf // 2, kernel_size=3, norm=False, activation=False, bias=True) self.final_hr_conv2 = ConvGnLelu(nf // 2, out_nc, kernel_size=3, norm=False, activation=False, bias=False) self.switches = [self.sw1.switch, self.sw2.switch, self.sw_grad.switch, self.conjoin_sw.switch] def forward(self, x, save_attentions=True, recurrent=None): # The attention_maps debugger outputs . Save that here. self.lr = x.detach().cpu() # If we're not saving attention, we also shouldn't be updating the attention norm. This is because the attention # norm should only be getting updates with new data, not recurrent generator sampling. for sw in self.switches: sw.set_update_attention_norm(save_attentions) x1 = self.model_fea_conv(x) if self.recurrent: rec = self.recurrent_process(recurrent) x1, recurrent_std = self.recurrent_join(x1, rec) x1, a1 = checkpoint(self.sw1, x1) x2, a2 = checkpoint(self.sw2, x1) x_grad = self.get_g_nopadding(x) x_grad = self.grad_conv(x_grad) x_grad, a3, grad_fea_std = checkpoint(self.sw_grad, x_grad, x1) x_grad = checkpoint(self.grad_lr_conv, x_grad) x_grad_out = checkpoint(self.upsample_grad, x_grad) x_grad_out = checkpoint(self.grad_branch_output_conv, x_grad_out) x3, a4, fea_grad_std = checkpoint(self.conjoin_sw, x2, x_grad) x_out = checkpoint(self.final_lr_conv, x3) x_out = checkpoint(self.upsample, x_out) x_out = checkpoint(self.final_hr_conv2, x_out) if save_attentions: self.attentions = [a1, a2, a3, a4] self.grad_fea_std = grad_fea_std.detach().cpu() self.fea_grad_std = fea_grad_std.detach().cpu() return x_grad_out, x_out