""" Modified from torch.utils.data.distributed.DistributedSampler Support enlarging the dataset for *iteration-oriented* training, for saving time when restart the dataloader after each epoch """ import math import torch from torch.utils.data.sampler import Sampler import torch.distributed as dist class DistIterSampler(Sampler): """Sampler that restricts data loading to a subset of the dataset. It is especially useful in conjunction with :class:`torch.nn.parallel.DistributedDataParallel`. In such case, each process can pass a DistributedSampler instance as a DataLoader sampler, and load a subset of the original dataset that is exclusive to it. .. note:: Dataset is assumed to be of constant size. Arguments: dataset: Dataset used for sampling. num_replicas (optional): Number of processes participating in distributed training. rank (optional): Rank of the current process within num_replicas. """ def __init__(self, dataset, num_replicas=None, rank=None, ratio=100): if num_replicas is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") num_replicas = dist.get_world_size() if rank is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") rank = dist.get_rank() self.dataset = dataset self.num_replicas = num_replicas self.rank = rank self.epoch = 0 self.num_samples = int(math.ceil(len(self.dataset) * ratio / self.num_replicas)) self.total_size = self.num_samples * self.num_replicas def __iter__(self): # deterministically shuffle based on epoch g = torch.Generator() g.manual_seed(self.epoch) indices = torch.randperm(self.total_size, generator=g).tolist() dsize = len(self.dataset) indices = [v % dsize for v in indices] # subsample indices = indices[self.rank:self.total_size:self.num_replicas] assert len(indices) == self.num_samples return iter(indices) def __len__(self): return self.num_samples def set_epoch(self, epoch): self.epoch = epoch