function calculate_PSNR_SSIM() % GT and SR folder folder_GT = '/mnt/SSD/xtwang/BasicSR_datasets/val_set5/Set5'; folder_SR = '/home/xtwang/Projects/BasicSR/results/RRDB_PSNR_x4/set5'; scale = 4; suffix = ''; % suffix for SR images test_Y = 1; % 1 for test Y channel only; 0 for test RGB channels if test_Y fprintf('Tesing Y channel.\n'); else fprintf('Tesing RGB channels.\n'); end filepaths = dir(fullfile(folder_GT, '*.png')); PSNR_all = zeros(1, length(filepaths)); SSIM_all = zeros(1, length(filepaths)); for idx_im = 1:length(filepaths) im_name = filepaths(idx_im).name; im_GT = imread(fullfile(folder_GT, im_name)); im_SR = imread(fullfile(folder_SR, [im_name(1:end-4), suffix, '.png'])); if test_Y % evaluate on Y channel in YCbCr color space if size(im_GT, 3) == 3 im_GT_YCbCr = rgb2ycbcr(im2double(im_GT)); im_GT_in = im_GT_YCbCr(:,:,1); im_SR_YCbCr = rgb2ycbcr(im2double(im_SR)); im_SR_in = im_SR_YCbCr(:,:,1); else im_GT_in = im2double(im_GT); im_SR_in = im2double(im_SR); end else % evaluate on RGB channels im_GT_in = im2double(im_GT); im_SR_in = im2double(im_SR); end % calculate PSNR and SSIM PSNR_all(idx_im) = calculate_PSNR(im_GT_in * 255, im_SR_in * 255, scale); SSIM_all(idx_im) = calculate_SSIM(im_GT_in * 255, im_SR_in * 255, scale); fprintf('%d.(X%d)%20s: \tPSNR = %f \tSSIM = %f\n', idx_im, scale, im_name(1:end-4), PSNR_all(idx_im), SSIM_all(idx_im)); end fprintf('\n%26s: \tPSNR = %f \tSSIM = %f\n', '####Average', mean(PSNR_all), mean(SSIM_all)); end function res = calculate_PSNR(GT, SR, border) % remove border GT = GT(border+1:end-border, border+1:end-border, :); SR = SR(border+1:end-border, border+1:end-border, :); % calculate PNSR (assume in [0,255]) error = GT(:) - SR(:); mse = mean(error.^2); res = 10 * log10(255^2/mse); end function res = calculate_SSIM(GT, SR, border) GT = GT(border+1:end-border, border+1:end-border, :); SR = SR(border+1:end-border, border+1:end-border, :); % calculate SSIM mssim = zeros(1, size(SR, 3)); for i = 1:size(SR,3) [mssim(i), ~] = ssim_index(GT(:,:,i), SR(:,:,i)); end res = mean(mssim); end function [mssim, ssim_map] = ssim_index(img1, img2, K, window, L) %======================================================================== %SSIM Index, Version 1.0 %Copyright(c) 2003 Zhou Wang %All Rights Reserved. % %The author is with Howard Hughes Medical Institute, and Laboratory %for Computational Vision at Center for Neural Science and Courant %Institute of Mathematical Sciences, New York University. % %---------------------------------------------------------------------- %Permission to use, copy, or modify this software and its documentation %for educational and research purposes only and without fee is hereby %granted, provided that this copyright notice and the original authors' %names appear on all copies and supporting documentation. This program %shall not be used, rewritten, or adapted as the basis of a commercial %software or hardware product without first obtaining permission of the %authors. The authors make no representations about the suitability of %this software for any purpose. It is provided "as is" without express %or implied warranty. %---------------------------------------------------------------------- % %This is an implementation of the algorithm for calculating the %Structural SIMilarity (SSIM) index between two images. Please refer %to the following paper: % %Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image %quality assessment: From error measurement to structural similarity" %IEEE Transactios on Image Processing, vol. 13, no. 1, Jan. 2004. % %Kindly report any suggestions or corrections to zhouwang@ieee.org % %---------------------------------------------------------------------- % %Input : (1) img1: the first image being compared % (2) img2: the second image being compared % (3) K: constants in the SSIM index formula (see the above % reference). defualt value: K = [0.01 0.03] % (4) window: local window for statistics (see the above % reference). default widnow is Gaussian given by % window = fspecial('gaussian', 11, 1.5); % (5) L: dynamic range of the images. default: L = 255 % %Output: (1) mssim: the mean SSIM index value between 2 images. % If one of the images being compared is regarded as % perfect quality, then mssim can be considered as the % quality measure of the other image. % If img1 = img2, then mssim = 1. % (2) ssim_map: the SSIM index map of the test image. The map % has a smaller size than the input images. The actual size: % size(img1) - size(window) + 1. % %Default Usage: % Given 2 test images img1 and img2, whose dynamic range is 0-255 % % [mssim ssim_map] = ssim_index(img1, img2); % %Advanced Usage: % User defined parameters. For example % % K = [0.05 0.05]; % window = ones(8); % L = 100; % [mssim ssim_map] = ssim_index(img1, img2, K, window, L); % %See the results: % % mssim %Gives the mssim value % imshow(max(0, ssim_map).^4) %Shows the SSIM index map % %======================================================================== if (nargin < 2 || nargin > 5) ssim_index = -Inf; ssim_map = -Inf; return; end if (size(img1) ~= size(img2)) ssim_index = -Inf; ssim_map = -Inf; return; end [M, N] = size(img1); if (nargin == 2) if ((M < 11) || (N < 11)) ssim_index = -Inf; ssim_map = -Inf; return end window = fspecial('gaussian', 11, 1.5); % K(1) = 0.01; % default settings K(2) = 0.03; % L = 255; % end if (nargin == 3) if ((M < 11) || (N < 11)) ssim_index = -Inf; ssim_map = -Inf; return end window = fspecial('gaussian', 11, 1.5); L = 255; if (length(K) == 2) if (K(1) < 0 || K(2) < 0) ssim_index = -Inf; ssim_map = -Inf; return; end else ssim_index = -Inf; ssim_map = -Inf; return; end end if (nargin == 4) [H, W] = size(window); if ((H*W) < 4 || (H > M) || (W > N)) ssim_index = -Inf; ssim_map = -Inf; return end L = 255; if (length(K) == 2) if (K(1) < 0 || K(2) < 0) ssim_index = -Inf; ssim_map = -Inf; return; end else ssim_index = -Inf; ssim_map = -Inf; return; end end if (nargin == 5) [H, W] = size(window); if ((H*W) < 4 || (H > M) || (W > N)) ssim_index = -Inf; ssim_map = -Inf; return end if (length(K) == 2) if (K(1) < 0 || K(2) < 0) ssim_index = -Inf; ssim_map = -Inf; return; end else ssim_index = -Inf; ssim_map = -Inf; return; end end C1 = (K(1)*L)^2; C2 = (K(2)*L)^2; window = window/sum(sum(window)); img1 = double(img1); img2 = double(img2); mu1 = filter2(window, img1, 'valid'); mu2 = filter2(window, img2, 'valid'); mu1_sq = mu1.*mu1; mu2_sq = mu2.*mu2; mu1_mu2 = mu1.*mu2; sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq; sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq; sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2; if (C1 > 0 && C2 > 0) ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2)); else numerator1 = 2*mu1_mu2 + C1; numerator2 = 2*sigma12 + C2; denominator1 = mu1_sq + mu2_sq + C1; denominator2 = sigma1_sq + sigma2_sq + C2; ssim_map = ones(size(mu1)); index = (denominator1.*denominator2 > 0); ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index)); index = (denominator1 ~= 0) & (denominator2 == 0); ssim_map(index) = numerator1(index)./denominator1(index); end mssim = mean2(ssim_map); end