#### general settings name: 003_RRDB_ESRGANx4_DIV2K use_tb_logger: true model: srgan distortion: sr scale: 4 gpu_ids: [0] amp_opt_level: O1 #### datasets datasets: train: name: DIV2K mode: LQGT dataroot_GT: E:/4k6k/datasets/div2k/DIV2K800_sub dataroot_LQ: E:/4k6k/datasets/div2k/DIV2K800_sub_bicLRx4 use_shuffle: true n_workers: 16 # per GPU batch_size: 32 target_size: 128 use_flip: true use_rot: true color: RGB val: name: div2kval mode: LQGT dataroot_GT: E:/4k6k/datasets/div2k/div2k_valid_hr dataroot_LQ: E:/4k6k/datasets/div2k/div2k_valid_lr_bicubic #### network structures network_G: which_model_G: RRDBNet in_nc: 3 out_nc: 3 nf: 64 nb: 23 network_D: which_model_D: discriminator_resnet in_nc: 3 nf: 64 #### path path: pretrain_model_G: ~ strict_load: true resume_state: ~ #### training settings: learning rate scheme, loss train: lr_G: !!float 1e-4 weight_decay_G: 0 beta1_G: 0.9 beta2_G: 0.99 lr_D: !!float 1e-4 weight_decay_D: 0 beta1_D: 0.9 beta2_D: 0.99 lr_scheme: MultiStepLR niter: 400000 warmup_iter: -1 # no warm up lr_steps: [50000, 100000, 200000, 300000] lr_gamma: 0.5 pixel_criterion: l1 pixel_weight: !!float 1e-2 feature_criterion: l1 feature_weight: 1 feature_weight_decay: .98 feature_weight_decay_steps: 500 feature_weight_minimum: .1 gan_type: gan # gan | ragan gan_weight: !!float 5e-3 D_update_ratio: 2 D_init_iters: 0 manual_seed: 10 val_freq: !!float 5e2 #### logger logger: print_freq: 50 save_checkpoint_freq: !!float 5e2