""" Master script that processes all MP3 files found in an input directory. Splits those files up into sub-files of a predetermined duration. """ import argparse import functools import os from multiprocessing.pool import ThreadPool import torch import torchaudio from tqdm import tqdm from data.util import find_audio_files, find_files_of_type from utils.util import load_audio def report_progress(progress_file, file): with open(progress_file, 'a', encoding='utf-8') as f: f.write(f'{file}\n') def process_file(file, base_path, output_path, progress_file, duration_per_clip, sampling_rate=22050): try: audio = load_audio(file, sampling_rate) except: print(f"Error loading file {file}") report_progress(progress_file, file) return outdir = os.path.join(output_path, f'{os.path.relpath(file, base_path)[:-4]}').replace('.', '').strip() os.makedirs(outdir, exist_ok=True) splits = torch.split(audio, duration_per_clip * sampling_rate, dim=-1) for i, spl in enumerate(splits): if spl.shape[-1] != duration_per_clip*sampling_rate: continue # In general, this just means "skip the last item". torchaudio.save(f'{outdir}/{i:05d}.wav', spl.unsqueeze(0), sampling_rate, encoding="PCM_S") report_progress(progress_file, file) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-path', type=str, help='Path to search for files', default='Y:\\sources\\manual_podcasts_music') parser.add_argument('-progress_file', type=str, help='Place to store all files that have already been processed', default='Y:\\sources\\manual_podcasts_music\\already_processed.txt') parser.add_argument('-output_path', type=str, help='Path for output files', default='Y:\\split\\manual_podcasts_music') parser.add_argument('-num_threads', type=int, help='Number of concurrent workers processing files.', default=4) parser.add_argument('-duration', type=int, help='Duration per clip in seconds', default=30) args = parser.parse_args() processed_files = set() if os.path.exists(args.progress_file): with open(args.progress_file, 'r', encoding='utf-8') as f: for line in f.readlines(): processed_files.add(line.strip()) files = set(find_audio_files(args.path, include_nonwav=True)) orig_len = len(files) files = files - processed_files print(f"Found {len(files)} files to process. Total processing is {100*(orig_len-len(files))/orig_len}% complete.") with ThreadPool(args.num_threads) as pool: list(tqdm(pool.imap(functools.partial(process_file, output_path=args.output_path, base_path=args.path, progress_file=args.progress_file, duration_per_clip=args.duration), files), total=len(files)))