"""create dataset and dataloader""" import logging import torch import torch.utils.data from munch import munchify from utils.util import opt_get def create_dataloader(dataset, dataset_opt, opt=None, sampler=None, collate_fn=None, shuffle=True): phase = dataset_opt['phase'] if phase == 'train': if opt_get(opt, ['dist'], False): world_size = torch.distributed.get_world_size() num_workers = dataset_opt['n_workers'] assert dataset_opt['batch_size'] % world_size == 0 batch_size = dataset_opt['batch_size'] // world_size else: num_workers = dataset_opt['n_workers'] batch_size = dataset_opt['batch_size'] return torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, sampler=sampler, drop_last=True, pin_memory=True, collate_fn=collate_fn) else: batch_size = dataset_opt['batch_size'] or 1 return torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=0, pin_memory=True, collate_fn=collate_fn) def create_dataset(dataset_opt, return_collate=False): mode = dataset_opt['mode'] collate = None # datasets for image restoration if mode == 'fullimage': from data.full_image_dataset import FullImageDataset as D elif mode == 'single_image_extensible': from data.single_image_dataset import SingleImageDataset as D elif mode == 'multi_frame_extensible': from data.multi_frame_dataset import MultiFrameDataset as D elif mode == 'combined': from data.combined_dataset import CombinedDataset as D elif mode == 'multiscale': from data.multiscale_dataset import MultiScaleDataset as D elif mode == 'paired_frame': from data.paired_frame_dataset import PairedFrameDataset as D elif mode == 'stylegan2': from data.stylegan2_dataset import Stylegan2Dataset as D elif mode == 'imagefolder': from data.image_folder_dataset import ImageFolderDataset as D elif mode == 'torch_dataset': from data.torch_dataset import TorchDataset as D elif mode == 'byol_dataset': from data.byol_attachment import ByolDatasetWrapper as D elif mode == 'byol_structured_dataset': from data.byol_attachment import StructuredCropDatasetWrapper as D elif mode == 'random_aug_wrapper': from data.byol_attachment import DatasetRandomAugWrapper as D elif mode == 'random_dataset': from data.random_dataset import RandomDataset as D elif mode == 'zipfile': from data.zip_file_dataset import ZipFileDataset as D elif mode == 'nv_tacotron': from data.audio.nv_tacotron_dataset import TextMelLoader as D from data.audio.nv_tacotron_dataset import TextMelCollate as C from models.tacotron2.hparams import create_hparams default_params = create_hparams() default_params.update(dataset_opt) dataset_opt = munchify(default_params) if opt_get(dataset_opt, ['needs_collate'], True): collate = C(dataset_opt.n_frames_per_step) elif mode == 'gpt_tts': from data.audio.gpt_tts_dataset import GptTtsDataset as D from data.audio.gpt_tts_dataset import GptTtsCollater as C collate = C(dataset_opt) elif mode == 'wavfile_clips': from data.audio.wavfile_dataset import WavfileDataset as D elif mode == 'stop_prediction': from models.tacotron2.hparams import create_hparams default_params = create_hparams() default_params.update(dataset_opt) dataset_opt = munchify(default_params) from data.audio.stop_prediction_dataset import StopPredictionDataset as D elif mode == 'stop_prediction2': from data.audio.stop_prediction_dataset_2 import StopPredictionDataset as D else: raise NotImplementedError('Dataset [{:s}] is not recognized.'.format(mode)) dataset = D(dataset_opt) if return_collate: return dataset, collate else: return dataset