import argparse import functools import torch from utils import options as option from trainer.networks import create_model class TracedModule: def __init__(self, idname): self.idname = idname self.traced_outputs = [] self.traced_inputs = [] class TorchCustomTrace: def __init__(self): self.module_name_counter = {} self.modules = {} self.graph = {} self.module_map_by_inputs = {} self.module_map_by_outputs = {} self.inputs_to_func_output_tuple = {} def add_tracked_module(self, mod: torch.nn.Module): modname = type(mod).__name__ if modname not in self.module_name_counter.keys(): self.module_name_counter[modname] = 0 self.module_name_counter[modname] += 1 idname = "%s(%03d)" % (modname, self.module_name_counter[modname]) self.modules[idname] = TracedModule(idname) return idname # Only called for nn.Modules since those are the only things we can access. Filling in the gaps will be done in # the backwards pass. def mem_forward_hook(self, module: torch.nn.Module, inputs, outputs, trace: str, mod_id: str): mod = self.modules[mod_id] ''' for li in inputs: if type(li) == torch.Tensor: li = [li] if type(li) == list: for i in li: if i.data_ptr() in self.module_map_by_inputs.keys(): self.module_map_by_inputs[i.data_ptr()].append(mod) else: self.module_map_by_inputs[i.data_ptr()] = [mod] for o in outputs: if o.data_ptr() in self.module_map_by_inputs.keys(): self.module_map_by_inputs[o.data_ptr()].append(mod) else: self.module_map_by_inputs[o.data_ptr()] = [mod] ''' print(trace) def mem_backward_hook(self, inputs, outputs, op): if len(inputs) == 0: print("No inputs.. %s" % (op,)) outs = [o.data_ptr() for o in outputs] tup = (outs, op) #print(tup) for li in inputs: if type(li) == torch.Tensor: li = [li] if type(li) == list: for i in li: if i.data_ptr() in self.module_map_by_inputs.keys(): print("%i: [%s] {%s}" % (i.data_ptr(), op, [n.idname for n in self.module_map_by_inputs[i.data_ptr()]])) if i.data_ptr() in self.inputs_to_func_output_tuple.keys(): self.inputs_to_func_output_tuple[i.data_ptr()].append(tup) else: self.inputs_to_func_output_tuple[i.data_ptr()] = [tup] def install_hooks(self, mod: torch.nn.Module, trace=""): mod_id = self.add_tracked_module(mod) my_trace = trace + "->" + mod_id # If this module has parameters, it also has a state worth tracking. #if next(mod.parameters(recurse=False), None) is not None: mod.register_forward_hook(functools.partial(self.mem_forward_hook, trace=my_trace, mod_id=mod_id)) for m in mod.children(): self.install_hooks(m, my_trace) def install_backward_hooks(self, grad_fn): # AccumulateGrad simply pushes a gradient into the specified variable, and isn't useful for the purposes of # tracing the graph. if grad_fn is None or "AccumulateGrad" in str(grad_fn): return grad_fn.register_hook(functools.partial(self.mem_backward_hook, op=str(grad_fn))) for g, _ in grad_fn.next_functions: self.install_backward_hooks(g) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../../options/train_div2k_pixgan_srg2.yml') opt = option.parse(parser.parse_args().opt, is_train=False) opt = option.dict_to_nonedict(opt) netG = create_model(opt) dummyInput = torch.rand(1,3,32,32) mode = 'onnx' if mode == 'torchscript': print("Tracing generator network..") traced_netG = torch.jit.trace(netG, dummyInput) traced_netG.save('../results/ts_generator.zip') print(traced_netG.code) for i, module in enumerate(traced_netG.RRDB_trunk.modules()): print(i, str(module)) elif mode == 'onnx': print("Performing onnx trace") input_names = ["lr_input"] output_names = ["hr_image"] dynamic_axes = {'lr_input': {0: 'batch', 1: 'filters', 2: 'h', 3: 'w'}, 'hr_image': {0: 'batch', 1: 'filters', 2: 'h', 3: 'w'}} torch.onnx.export(netG, dummyInput, "../results/gen.onnx", verbose=True, input_names=input_names, output_names=output_names, dynamic_axes=dynamic_axes, opset_version=12) elif mode == 'memtrace': criterion = torch.nn.MSELoss() tracer = TorchCustomTrace() tracer.install_hooks(netG) out, = netG(dummyInput) tracer.install_backward_hooks(out.grad_fn) target = torch.zeros_like(out) loss = criterion(out, target) loss.backward() elif mode == 'trace': out = netG.forward(dummyInput)[0] print(out.shape) # Build the graph backwards. graph = build_graph(out, 'output') def get_unique_id_for_fn(fn): return (str(fn).split(" object at ")[1])[:-1] class GraphNode: def __init__(self, fn): self.name = (str(fn).split(" object at ")[0])[1:] self.fn = fn self.children = {} self.parents = {} def add_parent(self, parent): self.parents[get_unique_id_for_fn(parent)] = parent def add_child(self, child): self.children[get_unique_id_for_fn(child)] = child class TorchGraph: def __init__(self): self.tensor_map = {} def get_node_for_tensor(self, t): return self.tensor_map[get_unique_id_for_fn(t)] def init(self, output_tensor): self.build_graph_backwards(output_tensor.grad_fn, None) # Find inputs self.inputs = [] for v in self.tensor_map.values(): # Is an input if the parents dict is empty. if bool(v.parents): self.inputs.append(v) def build_graph_backwards(self, fn, previous_fn): id = get_unique_id_for_fn(fn) if id in self.tensor_map: node = self.tensor_map[id] node.add_child(previous_fn) else: node = GraphNode(fn) self.tensor_map[id] = node # Propagate to children for child_fn in fn.next_functions: node.add_parent(self.build_graph_backwards(child_fn, fn)) return node