import math import os import torch import torch.nn as nn import torch.nn.functional as F import torchvision from torch.utils.checkpoint import checkpoint_sequential from models.archs.arch_util import make_layer, default_init_weights, ConvGnSilu, ConvGnLelu from models.archs.srg2_classic import Interpolate from utils.util import checkpoint class ResidualDenseBlock(nn.Module): def __init__(self, mid_channels=64, growth_channels=32): super(ResidualDenseBlock, self).__init__() for i in range(5): out_channels = mid_channels if i == 4 else growth_channels self.add_module( f'conv{i+1}', nn.Conv2d(mid_channels + i * growth_channels, out_channels, 3, 1, 1)) self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) for i in range(5): default_init_weights(getattr(self, f'conv{i+1}'), 0.1) def forward(self, x): x1 = self.lrelu(self.conv1(x)) x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1))) x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1))) x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1))) x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1)) return x5 * 0.2 + x # Linear block wrapper with custom weights and lrelu activation suited for use with AdaIN. class EqualLinear(nn.Module): def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1): super().__init__() self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul)) if bias: self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init)) else: self.bias = None self.scale = (1 / math.sqrt(in_dim)) * lr_mul self.lr_mul = lr_mul self.lrelu = nn.LeakyReLU(.2) def forward(self, input): out = F.linear(input, self.weight * self.scale) # Biased and scaled leaky relu. lrelu_bias = self.bias * self.lr_mul lrelu_dim = [1] * (out.ndim - lrelu_bias.ndim - 1) lrelu_scale = 2 ** .5 out = self.lrelu(out + lrelu_bias.view(1, lrelu_bias.shape[0], *lrelu_dim)) * lrelu_scale return out def __repr__(self): return ( f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})' ) class AdaIn(nn.Module): def __init__(self, channels, latent_nf): super(AdaIn, self).__init__() self.norm = nn.InstanceNorm2d(channels) self.latent_reducer = nn.Linear(latent_nf, channels * 2) self.channels = channels def forward(self, x, latent): xn = self.norm(x) latent = self.latent_reducer(latent) latent_bias = latent[:, :self.channels].view(x.shape[0], self.channels, 1, 1) latent_scale = latent[:, -self.channels:].view(x.shape[0], self.channels, 1, 1) return xn * latent_scale + latent_bias class RRDBWithAdaIn(nn.Module): def __init__(self, mid_channels, growth_channels=32, latent_nf=256): super(RRDBWithAdaIn, self).__init__() self.adain1 = AdaIn(mid_channels, latent_nf) self.rdb1 = ResidualDenseBlock(mid_channels, growth_channels) self.adain2 = AdaIn(mid_channels, latent_nf) self.rdb2 = ResidualDenseBlock(mid_channels, growth_channels) self.adain3 = AdaIn(mid_channels, latent_nf) self.rdb3 = ResidualDenseBlock(mid_channels, growth_channels) def forward(self, x, latent): out = self.rdb1(self.adain1(x, latent)) out = self.rdb2(self.adain2(out, latent)) out = self.rdb3(self.adain3(out, latent)) residual = out * .2 return residual + x, residual class ConvLatentEncoder(nn.Module): def __init__(self, latent_size): super(ConvLatentEncoder, self).__init__() layers = [EqualLinear(latent_size, latent_size, lr_mul=.01) for _ in range(8)] self.stack = nn.Sequential(*layers) def forward(self, latent): return self.stack(latent) class AdaRRDBNet(nn.Module): def __init__(self, in_channels, out_channels, mid_channels=64, num_blocks=23, growth_channels=32, blocks_per_checkpoint=4, scale=4, bottom_latent_only=False): super(AdaRRDBNet, self).__init__() self.latent_encoder = ConvLatentEncoder(256) self.num_blocks = num_blocks self.blocks_per_checkpoint = blocks_per_checkpoint self.scale = scale self.in_channels = in_channels self.nf = mid_channels self.bottom_latent_only = bottom_latent_only first_conv_stride = 1 if in_channels <= 4 else scale first_conv_ksize = 3 if first_conv_stride == 1 else 7 first_conv_padding = 1 if first_conv_stride == 1 else 3 self.conv_first = nn.Conv2d(in_channels, mid_channels, first_conv_ksize, first_conv_stride, first_conv_padding) self.body = make_layer( RRDBWithAdaIn, num_blocks, mid_channels=mid_channels, growth_channels=growth_channels, latent_nf=256) self.conv_body = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1) # upsample self.conv_up1 = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1) self.conv_up2 = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1) self.conv_hr = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1) self.conv_last = nn.Conv2d(mid_channels, out_channels, 3, 1, 1) self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) for m in [ self.conv_first, self.conv_body, self.conv_up1, self.conv_up2, self.conv_hr, self.conv_last ]: default_init_weights(m, 0.1) def forward(self, x, latent=None, ref=None): latent_was_none = latent if latent is None: latent = torch.randn((x.shape[0], 256), device=x.device) latent = self.latent_encoder(latent) if latent_was_none is not None: self.latent_mean = torch.mean(latent).detach().cpu() self.latent_std = torch.std(latent).detach().cpu() self.latent_var = torch.var(latent).detach().cpu() if self.in_channels > 4: x_lg = F.interpolate(x, scale_factor=self.scale, mode="bicubic") if ref is None: ref = torch.zeros_like(x_lg) x_lg = torch.cat([x_lg, ref], dim=1) else: x_lg = x feat = self.conv_first(x_lg) body_feat = feat self.block_residual_means = [] self.block_residual_stds = [] for bl in self.body: body_feat, residual = checkpoint(bl, body_feat, latent) self.block_residual_means.append(torch.mean(residual).cpu()) self.block_residual_stds.append(torch.std(residual).cpu()) body_feat = self.conv_body(body_feat) feat = feat + body_feat # upsample feat = self.lrelu( self.conv_up1(F.interpolate(feat, scale_factor=2, mode='nearest'))) if self.scale == 4: feat = self.lrelu( self.conv_up2(F.interpolate(feat, scale_factor=2, mode='nearest'))) else: feat = self.lrelu(self.conv_up2(feat)) out = self.conv_last(self.lrelu(self.conv_hr(feat))) return out def get_debug_values(self, s, n): blk_stds, blk_means = {}, {} for i, (s, m) in enumerate(zip(self.block_residual_stds, self.block_residual_means)): blk_stds['block_%i' % (i+1,)] = s blk_means['block_%i' % (i+1,)] = m return {'encoded_latent_mean': self.latent_mean, 'encoded_latent_std': self.latent_std, 'encoded_latent_var': self.latent_var, 'blocks_mean': blk_means, 'blocks_std': blk_stds} class LinearLatentEstimator(nn.Module): def __init__(self, in_nc, nf): super(LinearLatentEstimator, self).__init__() # [64, 128, 128] self.conv0_0 = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True) self.conv0_1 = nn.Conv2d(nf, nf, 4, 2, 1, bias=False) self.bn0_1 = nn.BatchNorm2d(nf, affine=True) # [64, 64, 64] self.conv1_0 = nn.Conv2d(nf, nf * 2, 3, 1, 1, bias=False) self.bn1_0 = nn.BatchNorm2d(nf * 2, affine=True) self.conv1_1 = nn.Conv2d(nf * 2, nf * 2, 4, 2, 1, bias=False) self.bn1_1 = nn.BatchNorm2d(nf * 2, affine=True) # [128, 32, 32] self.conv2_0 = nn.Conv2d(nf * 2, nf * 4, 3, 1, 1, bias=False) self.bn2_0 = nn.BatchNorm2d(nf * 4, affine=True) self.conv2_1 = nn.Conv2d(nf * 4, nf * 4, 4, 2, 1, bias=False) self.bn2_1 = nn.BatchNorm2d(nf * 4, affine=True) # [256, 16, 16] self.conv3_0 = nn.Conv2d(nf * 4, nf * 8, 3, 1, 1, bias=False) self.bn3_0 = nn.BatchNorm2d(nf * 8, affine=True) self.conv3_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False) self.bn3_1 = nn.BatchNorm2d(nf * 8, affine=True) # [256, 8, 8] self.conv4_0 = nn.Conv2d(nf * 8, nf * 8, 3, 1, 1, bias=False) self.bn4_0 = nn.BatchNorm2d(nf * 8, affine=True) self.conv4_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False) self.bn4_1 = nn.BatchNorm2d(nf * 8, affine=True) # [256, 4, 4] self.conv5_0 = nn.Conv2d(nf * 8, nf * 8, 3, 1, 1, bias=False) self.bn5_0 = nn.BatchNorm2d(nf * 8, affine=True) self.conv5_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False) self.bn5_1 = nn.BatchNorm2d(nf * 8, affine=True) self.bottom_channels = nf * 8 * 2 * 2 self.l = nn.Linear(self.bottom_channels, 1024) self.l2 = nn.Linear(1024, 256) self.lrelu = nn.LeakyReLU(.2, inplace=True) self.norm = nn.LayerNorm(256) def compute_body(self, x): fea = self.lrelu(self.bn1_0(self.conv1_0(x))) fea = self.lrelu(self.bn1_1(self.conv1_1(fea))) fea = self.lrelu(self.bn2_0(self.conv2_0(fea))) fea = self.lrelu(self.bn2_1(self.conv2_1(fea))) fea = self.lrelu(self.bn3_0(self.conv3_0(fea))) fea = self.lrelu(self.bn3_1(self.conv3_1(fea))) fea = self.lrelu(self.bn4_0(self.conv4_0(fea))) fea = self.lrelu(self.bn4_1(self.conv4_1(fea))) fea = self.lrelu(self.bn5_0(self.conv5_0(fea))) fea = self.lrelu(self.bn5_1(self.conv5_1(fea))) return fea def forward(self, x): fea = self.lrelu(self.conv0_0(x)) fea = self.lrelu(self.bn0_1(self.conv0_1(fea))) o = checkpoint(self.compute_body, fea) o = o.view(o.shape[0], self.bottom_channels) o = self.lrelu(self.l(o)) return self.norm(self.l2(o))