import random from bisect import bisect_left import numpy as np import torch from torch.utils import data from data.base_unsupervised_image_dataset import BaseUnsupervisedImageDataset # Builds a dataset composed of a set of folders. Each folder represents a single high resolution image that has been # chunked into patches of fixed size. A reference image is included as well as a list of center points for each patch. class SingleImageDataset(BaseUnsupervisedImageDataset): def __init__(self, opt): super(SingleImageDataset, self).__init__(opt) def get_paths(self): for i in range(len(self)): chunk_ind = bisect_left(self.starting_indices, i) chunk_ind = chunk_ind if chunk_ind < len(self.starting_indices) and self.starting_indices[chunk_ind] == i else chunk_ind-1 yield self.chunks[chunk_ind].tiles[i-self.starting_indices[chunk_ind]] def __getitem__(self, item): chunk_ind = bisect_left(self.starting_indices, item) chunk_ind = chunk_ind if chunk_ind < len(self.starting_indices) and self.starting_indices[chunk_ind] == item else chunk_ind-1 hq, hq_ref, hq_center, hq_mask, path = self.chunks[chunk_ind][item-self.starting_indices[chunk_ind]] hs, hrs, hms, hcs = self.resize_hq([hq], [hq_ref], [hq_mask], [hq_center]) ls, lrs, lms, lcs = self.synthesize_lq(hs, hrs, hms, hcs) # Convert to torch tensor hq = torch.from_numpy(np.ascontiguousarray(np.transpose(hs[0], (2, 0, 1)))).float() hq_ref = torch.from_numpy(np.ascontiguousarray(np.transpose(hrs[0], (2, 0, 1)))).float() hq_mask = torch.from_numpy(np.ascontiguousarray(hms[0])).unsqueeze(dim=0) hq_ref = torch.cat([hq_ref, hq_mask], dim=0) lq = torch.from_numpy(np.ascontiguousarray(np.transpose(ls[0], (2, 0, 1)))).float() lq_ref = torch.from_numpy(np.ascontiguousarray(np.transpose(lrs[0], (2, 0, 1)))).float() lq_mask = torch.from_numpy(np.ascontiguousarray(lms[0])).unsqueeze(dim=0) lq_ref = torch.cat([lq_ref, lq_mask], dim=0) return {'lq': lq, 'hq': hq, 'gt_fullsize_ref': hq_ref, 'lq_fullsize_ref': lq_ref, 'lq_center': torch.tensor(lcs[0], dtype=torch.long), 'gt_center': torch.tensor(hcs[0], dtype=torch.long), 'LQ_path': path, 'GT_path': path} if __name__ == '__main__': opt = { 'name': 'amalgam', 'paths': ['F:\\4k6k\\datasets\\images\\mi1_256'], 'weights': [1], 'target_size': 128, 'force_multiple': 32, 'scale': 2, 'eval': False, 'fixed_corruptions': ['jpeg-broad', 'gaussian_blur'], 'random_corruptions': ['noise-5', 'none'], 'num_corrupts_per_image': 1, 'corrupt_before_downsize': True, } ds = SingleImageDataset(opt) import os os.makedirs("debug", exist_ok=True) for i in range(0, len(ds)): o = ds[random.randint(0, len(ds))] #for k, v in o.items(): k = 'lq' v = o[k] #if 'LQ' in k and 'path' not in k and 'center' not in k: #if 'full' in k: #masked = v[:3, :, :] * v[3] #torchvision.utils.save_image(masked.unsqueeze(0), "debug/%i_%s_masked.png" % (i, k)) #v = v[:3, :, :] import torchvision torchvision.utils.save_image(v.unsqueeze(0), "debug/%i_%s.png" % (i, k))