import functools import math from math import sqrt import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange from torch import einsum from models.diffusion.nn import conv_nd, normalization, zero_module from models.diffusion.unet_diffusion import Upsample, Downsample, AttentionBlock from models.vqvae.vqvae import Quantize from trainer.networks import register_model from utils.util import opt_get, checkpoint def default(val, d): return val if val is not None else d def eval_decorator(fn): def inner(model, *args, **kwargs): was_training = model.training model.eval() out = fn(model, *args, **kwargs) model.train(was_training) return out return inner class ResBlock(nn.Module): def __init__( self, channels, dropout, out_channels=None, use_conv=False, use_scale_shift_norm=False, dims=2, up=False, down=False, kernel_size=3, ): super().__init__() self.channels = channels self.dropout = dropout self.out_channels = out_channels or channels self.use_conv = use_conv self.use_scale_shift_norm = use_scale_shift_norm padding = 1 if kernel_size == 3 else 2 self.in_layers = nn.Sequential( normalization(channels), nn.SiLU(), conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding), ) self.updown = up or down if up: self.h_upd = Upsample(channels, False, dims) self.x_upd = Upsample(channels, False, dims) elif down: self.h_upd = Downsample(channels, False, dims) self.x_upd = Downsample(channels, False, dims) else: self.h_upd = self.x_upd = nn.Identity() self.out_layers = nn.Sequential( normalization(self.out_channels), nn.SiLU(), nn.Dropout(p=dropout), zero_module( conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding) ), ) if self.out_channels == channels: self.skip_connection = nn.Identity() elif use_conv: self.skip_connection = conv_nd( dims, channels, self.out_channels, kernel_size, padding=padding ) else: self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) def forward(self, x): return checkpoint( self._forward, x ) def _forward(self, x): if self.updown: in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] h = in_rest(x) h = self.h_upd(h) x = self.x_upd(x) h = in_conv(h) else: h = self.in_layers(x) h = self.out_layers(h) return self.skip_connection(x) + h class DisjointUnet(nn.Module): def __init__( self, attention_resolutions, channel_mult_down, channel_mult_up, in_channels = 3, model_channels = 64, out_channels = 3, dims=2, num_res_blocks = 2, stride = 2, dropout=0, num_heads=4, ): super().__init__() self.enc_input_blocks = nn.ModuleList( [ conv_nd(dims, in_channels, model_channels, 3, padding=1) ] ) input_block_chans = [model_channels] ch = model_channels ds = 1 for level, mult in enumerate(channel_mult_down): for _ in range(num_res_blocks): layers = [ ResBlock( ch, dropout, out_channels=mult * model_channels, dims=dims, ) ] ch = mult * model_channels if ds in attention_resolutions: layers.append( AttentionBlock( ch, num_heads=num_heads, num_head_channels=-1, ) ) self.enc_input_blocks.append(nn.Sequential(*layers)) input_block_chans.append(ch) if level != len(channel_mult_down) - 1: out_ch = ch self.enc_input_blocks.append( Downsample( ch, True, dims=dims, out_channels=out_ch, factor=stride ) ) ch = out_ch input_block_chans.append(ch) ds *= 2 self.enc_middle_block = nn.Sequential( ResBlock( ch, dropout, dims=dims, ), AttentionBlock( ch, num_heads=num_heads, num_head_channels=-1, ), ResBlock( ch, dropout, dims=dims, ), ) self.enc_output_blocks = nn.ModuleList([]) for level, mult in list(enumerate(channel_mult_up)): for i in range(num_res_blocks + 1): if len(input_block_chans) > 0: ich = input_block_chans.pop() else: ich = 0 layers = [ ResBlock( ch + ich, dropout, out_channels=model_channels * mult, dims=dims, ) ] ch = model_channels * mult if ds in attention_resolutions: layers.append( AttentionBlock( ch, num_heads=num_heads, num_head_channels=-1, ) ) if level != len(channel_mult_up)-1 and i == num_res_blocks: out_ch = ch layers.append( Upsample(ch, True, dims=dims, out_channels=out_ch, factor=stride) ) ds //= 2 self.enc_output_blocks.append(nn.Sequential(*layers)) self.out = nn.Sequential( normalization(ch), nn.SiLU(), conv_nd(dims, ch, out_channels, 3, padding=1), ) def forward(self, x): hs = [] h = x for module in self.enc_input_blocks: h = module(h) hs.append(h) h = self.enc_middle_block(h) for module in self.enc_output_blocks: if len(hs) > 0: h = torch.cat([h, hs.pop()], dim=1) h = module(h) h = h.type(x.dtype) return self.out(h) class DiscreteVAE(nn.Module): def __init__( self, attention_resolutions, in_channels = 3, model_channels = 64, out_channels = 3, channel_mult=(1, 2, 4, 8), dims=2, num_tokens = 512, codebook_dim = 512, convergence_layer=2, num_res_blocks = 0, stride = 2, straight_through = False, dropout=0, num_heads=4, record_codes=True, ): super().__init__() self.in_channels = in_channels self.model_channels = model_channels self.out_channels = out_channels self.num_res_blocks = num_res_blocks self.attention_resolutions = attention_resolutions self.num_tokens = num_tokens self.num_layers = len(channel_mult) self.straight_through = straight_through self.codebook = Quantize(codebook_dim, num_tokens) self.positional_dims = dims self.dropout = dropout self.num_heads = num_heads self.record_codes = record_codes if record_codes: self.codes = torch.zeros((32768,), dtype=torch.long) self.code_ind = 0 self.internal_step = 0 enc_down = channel_mult enc_up = list(reversed(channel_mult[convergence_layer:])) self.encoder = DisjointUnet(attention_resolutions, enc_down, enc_up, in_channels=in_channels, model_channels=model_channels, out_channels=codebook_dim, dims=dims, num_res_blocks=num_res_blocks, num_heads=num_heads, dropout=dropout, stride=stride) dec_down = list(reversed(enc_up)) dec_up = list(reversed(enc_down)) self.decoder = DisjointUnet(attention_resolutions, dec_down, dec_up, in_channels=codebook_dim, model_channels=model_channels, out_channels=out_channels, dims=dims, num_res_blocks=num_res_blocks, num_heads=num_heads, dropout=dropout, stride=stride) def get_debug_values(self, step, __): if self.record_codes: # Report annealing schedule return {'histogram_codes': self.codes} else: return {} @torch.no_grad() @eval_decorator def get_codebook_indices(self, images): img = images logits = self.encoder(img).permute((0,2,3,1) if len(img.shape) == 4 else (0,2,1)) sampled, commitment_loss, codes = self.codebook(logits) return codes def decode( self, img_seq ): image_embeds = self.codebook.embed_code(img_seq) b, n, d = image_embeds.shape kwargs = {} if self.positional_dims == 1: arrange = 'b n d -> b d n' else: h = w = int(sqrt(n)) arrange = 'b (h w) d -> b d h w' kwargs = {'h': h, 'w': w} image_embeds = rearrange(image_embeds, arrange, **kwargs) images = self.decoder(image_embeds) return images def infer(self, img): logits = self.encoder(img).permute((0,2,3,1) if len(img.shape) == 4 else (0,2,1)) sampled, commitment_loss, codes = self.codebook(logits) return self.decode(codes) # Note: This module is not meant to be run in forward() except while training. It has special logic which performs # evaluation using quantized values when it detects that it is being run in eval() mode, which will be substantially # more lossy (but useful for determining network performance). def forward( self, img ): logits = self.encoder(img).permute((0,2,3,1) if len(img.shape) == 4 else (0,2,1)) sampled, commitment_loss, codes = self.codebook(logits) sampled = sampled.permute((0,3,1,2) if len(img.shape) == 4 else (0,2,1)) if self.training: out = sampled out = self.decoder(out) else: # This is non-differentiable, but gives a better idea of how the network is actually performing. out = self.decode(codes) # reconstruction loss recon_loss = F.mse_loss(img, out, reduction='none') # This is so we can debug the distribution of codes being learned. if self.record_codes and self.internal_step % 50 == 0: codes = codes.flatten() l = codes.shape[0] i = self.code_ind if (self.codes.shape[0] - self.code_ind) > l else self.codes.shape[0] - l self.codes[i:i+l] = codes.cpu() self.code_ind = self.code_ind + l if self.code_ind >= self.codes.shape[0]: self.code_ind = 0 self.internal_step += 1 return recon_loss, commitment_loss, out @register_model def register_my_dvae(opt_net, opt): return DiscreteVAE(**opt_get(opt_net, ['kwargs'], {})) if __name__ == '__main__': net = DiscreteVAE((8, 16), channel_mult=(1,2,4,8,8), in_channels=80, model_channels=128, out_channels=80, dims=1, num_res_blocks=2) inp = torch.randn((2,80,512)) print([j.shape for j in net(inp)])