import argparse import logging import os import os.path as osp import shutil import time import torch import torchvision from tqdm import tqdm import dlas.utils import dlas.utils.options as option import dlas.utils.util as util from dlas.data import create_dataloader, create_dataset from dlas.trainer.ExtensibleTrainer import ExtensibleTrainer if __name__ == "__main__": # options torch.backends.cudnn.benchmark = True want_metrics = False parser = argparse.ArgumentParser() parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../options/test_noisy_audio_clips_classifier.yml') opt = option.parse(parser.parse_args().opt, is_train=False) opt = option.dict_to_nonedict(opt) utils.util.loaded_options = opt util.mkdirs( (path for key, path in opt['path'].items() if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key)) util.setup_logger('base', opt['path']['log'], 'test_' + opt['name'], level=logging.INFO, screen=True, tofile=True) logger = logging.getLogger('base') logger.info(option.dict2str(opt)) # Create test dataset and dataloader test_loaders = [] for phase, dataset_opt in sorted(opt['datasets'].items()): if 'test' in phase: test_set = create_dataset(dataset_opt) if hasattr(test_set, 'wrapped_dataset'): test_set = test_set.wrapped_dataset test_loader = create_dataloader(test_set, dataset_opt, opt) logger.info('Number of test images: {:d}'.format(len(test_set))) test_loaders.append((dataset_opt['name'], test_loader)) model = ExtensibleTrainer(opt) # Remove all losses, since often labels will not be provided and this is not implied in test. for s in model.steps: s.losses = {} output_key = opt['eval']['classifier_logits_key'] labels = opt['eval']['output_labels'] path_key = opt['eval']['path_key'] output_base_dir = util.opt_get(opt, ['eval', 'output_dir'], None) output_file = open('classify_into_folders.tsv', 'a') step = 0 for test_set_name, test_loader in test_loaders: test_start_time = time.time() dataset_dir = osp.join(opt['path']['results_root'], opt['name']) util.mkdir(dataset_dir) for data in tqdm(test_loader): with torch.no_grad(): model.feed_data(data, 0) model.test() lbls = torch.nn.functional.softmax( model.eval_state[output_key][0].cpu(), dim=-1) for k, lbl in enumerate(lbls): lbl = labels[torch.argmax(lbl, dim=0)] src_path = data[path_key][k] output_file.write(f'{src_path}\t{lbl}\n') if output_base_dir is not None: dest = os.path.join(output_base_dir, lbl) os.makedirs(dest, exist_ok=True) shutil.copy(str(src_path), os.path.join( dest, f'{step}_{os.path.basename(str(src_path))}')) step += 1 output_file.flush() output_file.close()