import numpy as np import torch import torch.nn as nn # note: all dct related functions are either exactly as or based on those # at https://github.com/zh217/torch-dct def dct(x, norm=None): """ Discrete Cosine Transform, Type II (a.k.a. the DCT) For the meaning of the parameter `norm`, see: https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.fftpack.dct.html :param x: the input signal :param norm: the normalization, None or 'ortho' :return: the DCT-II of the signal over the last dimension """ x_shape = x.shape N = x_shape[-1] x = x.contiguous().view(-1, N) v = torch.cat([x[:, ::2], x[:, 1::2].flip([1])], dim=1) Vc = torch.rfft(v, 1, onesided=False) k = - torch.arange(N, dtype=x.dtype, device=x.device)[None, :] * np.pi / (2 * N) W_r = torch.cos(k) W_i = torch.sin(k) V = Vc[:, :, 0] * W_r - Vc[:, :, 1] * W_i if norm == 'ortho': V[:, 0] /= np.sqrt(N) * 2 V[:, 1:] /= np.sqrt(N / 2) * 2 V = 2 * V.view(*x_shape) return V def idct(X, norm=None): """ The inverse to DCT-II, which is a scaled Discrete Cosine Transform, Type III Our definition of idct is that idct(dct(x)) == x For the meaning of the parameter `norm`, see: https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.fftpack.dct.html :param X: the input signal :param norm: the normalization, None or 'ortho' :return: the inverse DCT-II of the signal over the last dimension """ x_shape = X.shape N = x_shape[-1] X_v = X.contiguous().view(-1, x_shape[-1]) / 2 if norm == 'ortho': X_v[:, 0] *= np.sqrt(N) * 2 X_v[:, 1:] *= np.sqrt(N / 2) * 2 k = torch.arange(x_shape[-1], dtype=X.dtype, device=X.device)[None, :] * np.pi / (2 * N) W_r = torch.cos(k) W_i = torch.sin(k) V_t_r = X_v V_t_r = V_t_r.to(device) V_t_i = torch.cat([X_v[:, :1] * 0, -X_v.flip([1])[:, :-1]], dim=1) V_t_i = V_t_i.to(device) V_r = V_t_r * W_r - V_t_i * W_i V_i = V_t_r * W_i + V_t_i * W_r V = torch.cat([V_r.unsqueeze(2), V_i.unsqueeze(2)], dim=2) v = torch.irfft(V, 1, onesided=False) x = v.new_zeros(v.shape) x[:, ::2] += v[:, :N - (N // 2)] x[:, 1::2] += v.flip([1])[:, :N // 2] return x.view(*x_shape) def dct_2d(x, norm=None): """ 2-dimensional Discrete Cosine Transform, Type II (a.k.a. the DCT) For the meaning of the parameter `norm`, see: https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.fftpack.dct.html :param x: the input signal :param norm: the normalization, None or 'ortho' :return: the DCT-II of the signal over the last 2 dimensions """ X1 = dct(x, norm=norm) X2 = dct(X1.transpose(-1, -2), norm=norm) return X2.transpose(-1, -2) def idct_2d(X, norm=None): """ The inverse to 2D DCT-II, which is a scaled Discrete Cosine Transform, Type III Our definition of idct is that idct_2d(dct_2d(x)) == x For the meaning of the parameter `norm`, see: https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.fftpack.dct.html :param X: the input signal :param norm: the normalization, None or 'ortho' :return: the DCT-II of the signal over the last 2 dimensions """ x1 = idct(X, norm=norm) x2 = idct(x1.transpose(-1, -2), norm=norm) return x2.transpose(-1, -2) def extract_patches_2d(img,patch_shape,step=[1.0,1.0],batch_first=False): """ source: https://gist.github.com/dem123456789/23f18fd78ac8da9615c347905e64fc78 """ patch_H, patch_W = patch_shape[0], patch_shape[1] if(img.size(2) < patch_H): num_padded_H_Top = (patch_H - img.size(2))//2 num_padded_H_Bottom = patch_H - img.size(2) - num_padded_H_Top padding_H = nn.ConstantPad2d((0, 0, num_padded_H_Top, num_padded_H_Bottom), 0) img = padding_H(img) if(img.size(3) < patch_W): num_padded_W_Left = (patch_W - img.size(3))//2 num_padded_W_Right = patch_W - img.size(3) - num_padded_W_Left padding_W = nn.ConstantPad2d((num_padded_W_Left,num_padded_W_Right, 0, 0), 0) img = padding_W(img) step_int = [0, 0] step_int[0] = int(patch_H*step[0]) if(isinstance(step[0], float)) else step[0] step_int[1] = int(patch_W*step[1]) if(isinstance(step[1], float)) else step[1] patches_fold_H = img.unfold(2, patch_H, step_int[0]) if((img.size(2) - patch_H) % step_int[0] != 0): patches_fold_H = torch.cat((patches_fold_H, img[:, :, -patch_H:, :].permute(0,1,3,2).unsqueeze(2)),dim=2) patches_fold_HW = patches_fold_H.unfold(3, patch_W, step_int[1]) if((img.size(3) - patch_W) % step_int[1] != 0): patches_fold_HW = torch.cat((patches_fold_HW, patches_fold_H[:, :, :, -patch_W:, :].permute(0, 1, 2, 4, 3).unsqueeze(3)), dim=3) patches = patches_fold_HW.permute(2, 3, 0, 1, 4, 5) patches = patches.reshape(-1, img.size(0), img.size(1), patch_H, patch_W) if(batch_first): patches = patches.permute(1, 0, 2, 3, 4) return patches