import os from pathlib import Path import numpy as np import torch import torch.nn.functional as F import torch.utils.data import torchaudio import torchvision from tqdm import tqdm from utils.util import opt_get class PreprocessedMelDataset(torch.utils.data.Dataset): def __init__(self, opt): path = opt['path'] cache_path = opt['cache_path'] # Will fail when multiple paths specified, must be specified in this case. if os.path.exists(cache_path): self.paths = torch.load(cache_path) else: print("Building cache..") path = Path(path) self.paths = [str(p) for p in path.rglob("*.npz")] torch.save(self.paths, cache_path) self.pad_to = opt_get(opt, ['pad_to_samples'], 10336) def __getitem__(self, index): with np.load(self.paths[index]) as npz_file: mel = torch.tensor(npz_file['arr_0']) assert mel.shape[-1] <= self.pad_to padding_needed = self.pad_to - mel.shape[-1] mask = torch.zeros_like(mel) if padding_needed > 0: mel = F.pad(mel, (0,padding_needed)) mask = F.pad(mask, (0,padding_needed), value=1) output = { 'mel': mel, 'mel_lengths': torch.tensor(mel.shape[-1]), 'mask': mask, 'mask_lengths': torch.tensor(mask.shape[-1]), 'path': self.paths[index], } return output def __len__(self): return len(self.paths) if __name__ == '__main__': params = { 'mode': 'preprocessed_mel', 'path': 'Y:\\separated\\large_mels', 'cache_path': 'Y:\\separated\\large_mels.pth', 'pad_to_samples': 10336, 'phase': 'train', 'n_workers': 0, 'batch_size': 16, } from data import create_dataset, create_dataloader ds = create_dataset(params) dl = create_dataloader(ds, params) i = 0 for b in tqdm(dl): #pass torchvision.utils.save_image((b['mel'].unsqueeze(1)+1)/2, f'{i}.png') i += 1 if i > 20: break