import functools import torch from torch import nn, einsum import torch.nn.functional as F import torch.distributed as distributed from torch.cuda.amp import autocast from einops import rearrange, repeat from contextlib import contextmanager import torch_intermediary as ml def par(t, nm): print(f'grad report {nm}: {t}') return t def reg(t, nm): l = torch.tensor([0], requires_grad=True, device=t.device, dtype=torch.float) l.register_hook(functools.partial(par, nm=nm)) t = t + l return t def exists(val): return val is not None def default(val, d): return val if exists(val) else d def noop(*args, **kwargs): pass def l2norm(t): return F.normalize(t, p = 2, dim = -1) def log(t, eps = 1e-20): return torch.log(t.clamp(min = eps)) def gumbel_noise(t): noise = torch.zeros_like(t).uniform_(0, 1) return -log(-log(noise)) def gumbel_sample(t, temperature = 1., dim = -1): if temperature == 0: return t.argmax(dim = dim) return ((t / temperature) + gumbel_noise(t)).argmax(dim = dim) def ema_inplace(moving_avg, new, decay): moving_avg.data.mul_(decay).add_(new, alpha = (1 - decay)) def laplace_smoothing(x, n_categories, eps = 1e-5): return (x + eps) / (x.sum() + n_categories * eps) def sample_vectors(samples, num): num_samples, device = samples.shape[0], samples.device if num_samples >= num: indices = torch.randperm(num_samples, device = device)[:num] else: indices = torch.randint(0, num_samples, (num,), device = device) return samples[indices] def kmeans(samples, num_clusters, num_iters = 10, use_cosine_sim = False): dim, dtype, device = samples.shape[-1], samples.dtype, samples.device means = sample_vectors(samples, num_clusters) for _ in range(num_iters): if use_cosine_sim: dists = samples @ means.t() else: diffs = rearrange(samples, 'n d -> n () d') \ - rearrange(means, 'c d -> () c d') dists = -(diffs ** 2).sum(dim = -1) buckets = dists.max(dim = -1).indices bins = torch.bincount(buckets, minlength = num_clusters) zero_mask = bins == 0 bins_min_clamped = bins.masked_fill(zero_mask, 1) new_means = buckets.new_zeros(num_clusters, dim, dtype = dtype) new_means.scatter_add_(0, repeat(buckets, 'n -> n d', d = dim), samples) new_means = new_means / bins_min_clamped[..., None] if use_cosine_sim: new_means = l2norm(new_means) means = torch.where(zero_mask[..., None], means, new_means) return means, bins # regularization losses def orthgonal_loss_fn(t): # eq (2) from https://arxiv.org/abs/2112.00384 n = t.shape[0] normed_codes = l2norm(t) identity = torch.eye(n, device = t.device) cosine_sim = einsum('i d, j d -> i j', normed_codes, normed_codes) return ((cosine_sim - identity) ** 2).sum() / (n ** 2) # distance types class EuclideanCodebook(nn.Module): def __init__( self, dim, codebook_size, kmeans_init = False, kmeans_iters = 10, decay = 0.8, eps = 1e-5, threshold_ema_dead_code = 2, use_ddp = False, learnable_codebook = False, sample_codebook_temp = 0 ): super().__init__() self.decay = decay init_fn = torch.randn if not kmeans_init else torch.zeros embed = init_fn(codebook_size, dim) self.codebook_size = codebook_size self.kmeans_iters = kmeans_iters self.eps = eps self.threshold_ema_dead_code = threshold_ema_dead_code self.sample_codebook_temp = sample_codebook_temp self.all_reduce_fn = distributed.all_reduce if use_ddp else noop self.register_buffer('initted', torch.Tensor([not kmeans_init])) self.register_buffer('cluster_size', torch.zeros(codebook_size)) self.register_buffer('embed_avg', embed.clone()) self.learnable_codebook = learnable_codebook if learnable_codebook: self.embed = nn.Parameter(embed) else: self.register_buffer('embed', embed) @torch.jit.ignore def init_embed_(self, data): if self.initted: return embed, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters) self.embed.data.copy_(embed) self.embed_avg.data.copy_(embed.clone()) self.cluster_size.data.copy_(cluster_size) self.initted.data.copy_(torch.Tensor([True])) def replace(self, samples, mask): modified_codebook = torch.where( mask[..., None], sample_vectors(samples, self.codebook_size), self.embed ) self.embed.data.copy_(modified_codebook) def expire_codes_(self, batch_samples): if self.threshold_ema_dead_code == 0: return expired_codes = self.cluster_size < self.threshold_ema_dead_code if not torch.any(expired_codes): return batch_samples = rearrange(batch_samples, '... d -> (...) d') self.replace(batch_samples, mask = expired_codes) @autocast(enabled = False) def forward(self, x, used_codes=[]): shape, dtype = x.shape, x.dtype flatten = rearrange(x, '... d -> (...) d') self.init_embed_(flatten) embed = self.embed if not self.learnable_codebook else self.embed.detach() embed = embed.t() dist = -( flatten.pow(2).sum(1, keepdim=True) - 2 * flatten @ embed + embed.pow(2).sum(0, keepdim=True) ) for uc in used_codes: mask = torch.arange(0, self.codebook_size, device=x.device).unsqueeze(0).repeat(x.shape[0],1) == uc.unsqueeze(1) dist[mask] = -torch.inf embed_ind = gumbel_sample(dist, dim = -1, temperature = self.sample_codebook_temp) embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype) embed_ind = embed_ind.view(*shape[:-1]) quantize = F.embedding(embed_ind, self.embed) # Perform the gumbel trick on the end result (during training) if self.training: quantize = flatten + (quantize - flatten).detach() if self.training: cluster_size = embed_onehot.sum(0) self.all_reduce_fn(cluster_size) ema_inplace(self.cluster_size, cluster_size, self.decay) embed_sum = flatten.t() @ embed_onehot self.all_reduce_fn(embed_sum) ema_inplace(self.embed_avg, embed_sum.t(), self.decay) cluster_size = laplace_smoothing(self.cluster_size, self.codebook_size, self.eps) * self.cluster_size.sum() embed_normalized = self.embed_avg / cluster_size.unsqueeze(1) self.embed.data.copy_(embed_normalized) self.expire_codes_(x) return quantize, embed_ind class CosineSimCodebook(nn.Module): def __init__( self, dim, codebook_size, kmeans_init = False, kmeans_iters = 10, decay = 0.8, eps = 1e-5, threshold_ema_dead_code = 2, use_ddp = False, learnable_codebook = False, sample_codebook_temp = 0. ): super().__init__() self.decay = decay if not kmeans_init: embed = l2norm(torch.randn(codebook_size, dim)) else: embed = torch.zeros(codebook_size, dim) self.codebook_size = codebook_size self.kmeans_iters = kmeans_iters self.eps = eps self.threshold_ema_dead_code = threshold_ema_dead_code self.sample_codebook_temp = sample_codebook_temp self.all_reduce_fn = distributed.all_reduce if use_ddp else noop self.register_buffer('initted', torch.Tensor([not kmeans_init])) self.register_buffer('cluster_size', torch.zeros(codebook_size)) self.learnable_codebook = learnable_codebook if learnable_codebook: self.embed = nn.Parameter(embed) else: self.register_buffer('embed', embed) @torch.jit.ignore def init_embed_(self, data): if self.initted: return embed, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters, use_cosine_sim = True) self.embed.data.copy_(embed) self.cluster_size.data.copy_(cluster_size) self.initted.data.copy_(torch.Tensor([True])) def replace(self, samples, mask): samples = l2norm(samples) modified_codebook = torch.where( mask[..., None], sample_vectors(samples, self.codebook_size), self.embed ) self.embed.data.copy_(modified_codebook) def expire_codes_(self, batch_samples): if self.threshold_ema_dead_code == 0: return expired_codes = self.cluster_size < self.threshold_ema_dead_code if not torch.any(expired_codes): return batch_samples = rearrange(batch_samples, '... d -> (...) d') self.replace(batch_samples, mask = expired_codes) @autocast(enabled = False) def forward(self, x, used_codes=[]): shape, dtype = x.shape, x.dtype flatten = rearrange(x, '... d -> (...) d') flatten = l2norm(flatten) self.init_embed_(flatten) embed = self.embed if not self.learnable_codebook else self.embed.detach() embed = l2norm(embed) dist = flatten @ embed.t() for uc in used_codes: mask = torch.arange(0, self.codebook_size, device=x.device).unsqueeze(0).repeat(x.shape[0],1) == uc.unsqueeze(1) dist[mask] = -torch.inf embed_ind = gumbel_sample(dist, dim = -1, temperature = self.sample_codebook_temp) embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype) embed_ind = embed_ind.view(*shape[:-1]) quantize = F.embedding(embed_ind, self.embed) # Perform the gumbel trick on the end result (during training) if self.training: quantize = flatten + (quantize - flatten).detach() if self.training: bins = embed_onehot.sum(0) self.all_reduce_fn(bins) ema_inplace(self.cluster_size, bins, self.decay) zero_mask = (bins == 0) bins = bins.masked_fill(zero_mask, 1.) embed_sum = flatten.t() @ embed_onehot self.all_reduce_fn(embed_sum) embed_normalized = (embed_sum / bins.unsqueeze(0)).t() embed_normalized = l2norm(embed_normalized) embed_normalized = torch.where(zero_mask[..., None], embed, embed_normalized) ema_inplace(self.embed, embed_normalized, self.decay) self.expire_codes_(x) return quantize, embed_ind # main class class VectorQuantize(nn.Module): def __init__( self, dim, codebook_size, n_embed = None, codebook_dim = None, decay = 0.8, eps = 1e-5, kmeans_init = False, kmeans_iters = 10, use_cosine_sim = False, threshold_ema_dead_code = 0, channel_last = True, accept_image_fmap = False, commitment_weight = None, commitment = 1., # deprecate in next version, turn off by default orthogonal_reg_weight = 0., orthogonal_reg_active_codes_only = False, orthogonal_reg_max_codes = None, sample_codebook_temp = 0., sync_codebook = False ): super().__init__() n_embed = default(n_embed, codebook_size) codebook_dim = default(codebook_dim, dim) requires_projection = codebook_dim != dim self.project_in = ml.Linear(dim, codebook_dim) if requires_projection \ else nn.Identity() self.project_out = ml.Linear(codebook_dim, dim) if requires_projection \ else nn.Identity() self.eps = eps self.commitment_weight = default(commitment_weight, commitment) has_codebook_orthogonal_loss = orthogonal_reg_weight > 0 self.orthogonal_reg_weight = orthogonal_reg_weight self.orthogonal_reg_active_codes_only = orthogonal_reg_active_codes_only self.orthogonal_reg_max_codes = orthogonal_reg_max_codes codebook_class = EuclideanCodebook if not use_cosine_sim \ else CosineSimCodebook self._codebook = codebook_class( dim = codebook_dim, codebook_size = n_embed, kmeans_init = kmeans_init, kmeans_iters = kmeans_iters, decay = decay, eps = eps, threshold_ema_dead_code = threshold_ema_dead_code, use_ddp = sync_codebook, learnable_codebook = has_codebook_orthogonal_loss, sample_codebook_temp = sample_codebook_temp ) self.codebook_size = codebook_size self.accept_image_fmap = accept_image_fmap self.channel_last = channel_last @property def codebook(self): return self._codebook.embed def forward(self, x, used_codes=None): shape, device, codebook_size = x.shape, x.device, self.codebook_size need_transpose = not self.channel_last and not self.accept_image_fmap if self.accept_image_fmap: height, width = x.shape[-2:] x = rearrange(x, 'b c h w -> b (h w) c') if need_transpose: x = rearrange(x, 'b d n -> b n d') x = self.project_in(x) quantize, embed_ind = self._codebook(x, used_codes) loss = torch.tensor([0.], device = device, requires_grad = self.training) if self.training: if self.commitment_weight > 0: commit_loss = F.mse_loss(quantize.detach(), x) loss = loss + commit_loss * self.commitment_weight if self.orthogonal_reg_weight > 0: codebook = self.codebook if self.orthogonal_reg_active_codes_only: # only calculate orthogonal loss for the activated codes for this batch unique_code_ids = torch.unique(embed_ind) codebook = codebook[unique_code_ids] num_codes = codebook.shape[0] if exists(self.orthogonal_reg_max_codes) and num_codes > self.orthogonal_reg_max_codes: rand_ids = torch.randperm(num_codes, device = device)[:self.orthogonal_reg_max_codes] codebook = codebook[rand_ids] orthogonal_reg_loss = orthgonal_loss_fn(codebook) loss = loss + orthogonal_reg_loss * self.orthogonal_reg_weight quantize = self.project_out(quantize) if need_transpose: quantize = rearrange(quantize, 'b n d -> b d n') if self.accept_image_fmap: quantize = rearrange(quantize, 'b (h w) c -> b c h w', h = height, w = width) embed_ind = rearrange(embed_ind, 'b (h w) -> b h w', h = height, w = width) return quantize, embed_ind, loss