import os.path as osp import logging import random import argparse import torchvision import utils import utils.options as option import utils.util as util from models.waveglow.denoiser import Denoiser from trainer.ExtensibleTrainer import ExtensibleTrainer from data import create_dataset, create_dataloader from tqdm import tqdm import torch import numpy as np from scipy.io import wavfile def forward_pass(model, denoiser, data, output_dir, opt, b): with torch.no_grad(): model.feed_data(data, 0) model.test() pred_waveforms = model.eval_state[opt['eval']['output_state']][0] pred_waveforms = denoiser(pred_waveforms) gt = 'ground_truth' in opt['eval'].keys() if gt: ground_truth_waveforms = model.eval_state[opt['eval']['ground_truth']][0] ground_truth_waveforms = denoiser(ground_truth_waveforms) for i in range(pred_waveforms.shape[0]): # Output predicted mels and waveforms. pred_mel = model.eval_state[opt['eval']['pred_mel']][0][i].unsqueeze(0) pred_mel = ((pred_mel - pred_mel.mean()) / max(abs(pred_mel.min()), pred_mel.max())).unsqueeze(1) torchvision.utils.save_image(pred_mel, osp.join(output_dir, f'{b}_{i}_pred_mel.png')) audio = pred_waveforms[i][0].cpu().numpy() wavfile.write(osp.join(output_dir, f'{b}_{i}.wav'), 22050, audio) if gt: gt_mel = model.eval_state[opt['eval']['ground_truth_mel']][0][i].unsqueeze(0) gt_mel = ((gt_mel - gt_mel.mean()) / max(abs(gt_mel.min()), gt_mel.max())).unsqueeze(1) torchvision.utils.save_image(gt_mel, osp.join(output_dir, f'{b}_{i}_gt_mel.png')) audio = ground_truth_waveforms[i][0].cpu().numpy() wavfile.write(osp.join(output_dir, f'{b}_{i}_ground_truth.wav'), 22050, audio) if __name__ == "__main__": # Set seeds torch.manual_seed(5555) random.seed(5555) np.random.seed(5555) #### options torch.backends.cudnn.benchmark = True want_metrics = False parser = argparse.ArgumentParser() parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../options/test_lrdvae_audio_clips.yml') opt = option.parse(parser.parse_args().opt, is_train=False) opt = option.dict_to_nonedict(opt) utils.util.loaded_options = opt util.mkdirs( (path for key, path in opt['path'].items() if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key)) util.setup_logger('base', opt['path']['log'], 'test_' + opt['name'], level=logging.INFO, screen=True, tofile=True) logger = logging.getLogger('base') logger.info(option.dict2str(opt)) test_loaders = [] for phase, dataset_opt in sorted(opt['datasets'].items()): test_set, collate_fn = create_dataset(dataset_opt, return_collate=True) test_loader = create_dataloader(test_set, dataset_opt, collate_fn=collate_fn) logger.info('Number of test texts in [{:s}]: {:d}'.format(dataset_opt['name'], len(test_set))) test_loaders.append(test_loader) model = ExtensibleTrainer(opt) denoiser = Denoiser(model.networks['waveglow'].module) # Pretty hacky, need to figure out a better way to integrate this. batch = 0 for test_loader in test_loaders: dataset_dir = opt['path']['results_root'] util.mkdir(dataset_dir) tq = tqdm(test_loader) for data in tq: forward_pass(model, denoiser, data, dataset_dir, opt, batch) batch += 1