""" A list of functions that map a unified set of arguments to a fully built transformer. Also includes some testing utilities for measuring parameter count, FLOPS, and general performance of each type. Every function contains the following arguments: layers: Net number of layers in the transformer. model_dim: Hidden dimensionality of the model. heads: Number of attention heads. max_mel_seq_len: Maximum mel sequence length to attend to. max_text_seq_len: Maximum text sequence length to attend to. checkpointing: Whether or not the underlying implementation should support gradient checkpointing. Returns: (model, global_mel_pos_embedding, global_text_pos_embedding, local_mel_pos_embedding, local_text_pos_embedding) model: The transformer model global_mel_pos_embedding: A global embedding function (that takes the MEL sequence as input) which should be added on to the MEL embeddings. global_text_pos_embedding: The global embedding function for text tokens. local_mel_pos_embedding: A local embedding function which, if not None, should be concatenated with the local text position embeddings and fed to the transformer. local_text_pos_embedding: The local embedding function for text positions which will be None if local_mel_pos_embedding=None. """ import functools from time import time import torch import torch.nn as nn from tqdm import tqdm def null_position_embeddings(range, dim): return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device) class LearnedPositionEmbeddings(nn.Module): def __init__(self, seq_len, model_dim, init=.02): super().__init__() self.emb = nn.Embedding(seq_len, model_dim) # Initializing this way is standard for GPT-2 self.emb.weight.data.normal_(mean=0.0, std=init) def forward(self, x): sl = x.shape[1] return self.emb(torch.arange(0, sl, device=x.device)) def build_hf_gpt_transformer(layers, model_dim, heads, max_mel_seq_len, max_text_seq_len, checkpointing): """ GPT-2 implemented by the HuggingFace library. """ from transformers import GPT2Config, GPT2Model gpt_config = GPT2Config(vocab_size=256, # Unused. n_positions=max_mel_seq_len+max_text_seq_len, n_ctx=max_mel_seq_len+max_text_seq_len, n_embd=model_dim, n_layer=layers, n_head=heads, gradient_checkpointing=checkpointing, use_cache=not checkpointing) gpt = GPT2Model(gpt_config) # Override the built in positional embeddings del gpt.wpe gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim) # Built-in token embeddings are unused. del gpt.wte return gpt, LearnedPositionEmbeddings(max_mel_seq_len, model_dim), LearnedPositionEmbeddings(max_text_seq_len, model_dim),\ None, None def build_lr_performer(layers, model_dim, heads, max_mel_seq_len, max_text_seq_len, checkpointing): """ lucidrains Performer implementation, https://github.com/lucidrains/performer-pytorch """ from models.lucidrains.performer.performer_pytorch import Performer model = Performer(dim=model_dim, depth=layers, heads=heads, dim_head=model_dim, causal=True) return model def build_lr_reformer(layers, model_dim, heads, max_mel_seq_len, max_text_seq_len, checkpointing): """ lucidrains Reformer implementation, https://github.com/lucidrains/reformer-pytorch """ pass def build_lr_xformer(layers, model_dim, heads, max_mel_seq_len, max_text_seq_len, checkpointing): """ lucidrains x-transformer implementation, https://github.com/lucidrains/x-transformers """ pass def test_all_performance(**kwargs): transformer_builders = [#build_hf_gpt_transformer, build_lr_performer,] # build_lr_reformer, # build_lr_xformer] for builder in transformer_builders: model = builder(**kwargs) start = time() args = torch.randint(0, 8192, (16,450)) for k in tqdm(range(10)): model(args) stop = time() print(f"Model: {str(builder)}; Elapsed: {stop-start}") if __name__ == '__main__': test_all_performance(layers=12, model_dim=512, heads=8, num_tokens=8192, max_seq_len=1000, checkpointing=False)