import torch from torch.cuda.amp import autocast from models.archs.flownet2.networks import Resample2d from models.archs.flownet2 import flow2img from models.injectors import Injector def create_stereoscopic_injector(opt, env): type = opt['type'] if type == 'stereoscopic_resample': return ResampleInjector(opt, env) elif type == 'stereoscopic_flow2image': return Flow2Image(opt, env) return None class ResampleInjector(Injector): def __init__(self, opt, env): super(ResampleInjector, self).__init__(opt, env) self.resample = Resample2d() self.flow = opt['flowfield'] def forward(self, state): with autocast(enabled=False): return {self.output: self.resample(state[self.input], state[self.flow])} # Converts a flowfield to an image representation for viewing purposes. # Uses flownet's implementation to do so. Which really sucks. TODO: just do my own implementation in the future. # Note: this is not differentiable and is only usable for debugging purposes. class Flow2Image(Injector): def __init__(self, opt, env): super(Flow2Image, self).__init__(opt, env) def forward(self, state): with torch.no_grad(): flo = state[self.input].cpu() bs, c, h, w = flo.shape flo = flo.permute(0, 2, 3, 1) # flow2img works in numpy space for some reason.. imgs = torch.empty_like(flo) flo = flo.numpy() for b in range(bs): img = flow2img(flo[b]) # Note that this returns the image in an integer format. img = torch.tensor(img, dtype=torch.float) / 255 imgs[b] = img imgs = imgs.permute(0, 3, 1, 2) return {self.output: imgs}