import math import torch import torch.nn as nn import torch.nn.functional as F def default_conv(in_channels, out_channels, kernel_size,stride=1, bias=True): return nn.Conv2d( in_channels, out_channels, kernel_size, padding=(kernel_size//2),stride=stride, bias=bias) class MeanShift(nn.Conv2d): def __init__( self, rgb_range, rgb_mean=(0.4488, 0.4371, 0.4040), rgb_std=(1.0, 1.0, 1.0), sign=-1): super(MeanShift, self).__init__(3, 3, kernel_size=1) std = torch.Tensor(rgb_std) self.weight.data = torch.eye(3).view(3, 3, 1, 1) / std.view(3, 1, 1, 1) self.bias.data = sign * rgb_range * torch.Tensor(rgb_mean) / std for p in self.parameters(): p.requires_grad = False class BasicBlock(nn.Sequential): def __init__( self, conv, in_channels, out_channels, kernel_size, stride=1, bias=True, bn=False, act=nn.PReLU()): m = [conv(in_channels, out_channels, kernel_size, bias=bias)] if bn: m.append(nn.BatchNorm2d(out_channels)) if act is not None: m.append(act) super(BasicBlock, self).__init__(*m) class ResBlock(nn.Module): def __init__( self, conv, n_feats, kernel_size, bias=True, bn=False, act=nn.PReLU(), res_scale=1): super(ResBlock, self).__init__() m = [] for i in range(2): m.append(conv(n_feats, n_feats, kernel_size, bias=bias)) if bn: m.append(nn.BatchNorm2d(n_feats)) if i == 0: m.append(act) self.body = nn.Sequential(*m) self.res_scale = res_scale def forward(self, x): res = self.body(x).mul(self.res_scale) res += x return res class Upsampler(nn.Sequential): def __init__(self, conv, scale, n_feats, bn=False, act=False, bias=True): m = [] if (scale & (scale - 1)) == 0: # Is scale = 2^n? for _ in range(int(math.log(scale, 2))): m.append(conv(n_feats, 4 * n_feats, 3, bias)) m.append(nn.PixelShuffle(2)) if bn: m.append(nn.BatchNorm2d(n_feats)) if act == 'relu': m.append(nn.ReLU(True)) elif act == 'prelu': m.append(nn.PReLU(n_feats)) elif scale == 3: m.append(conv(n_feats, 9 * n_feats, 3, bias)) m.append(nn.PixelShuffle(3)) if bn: m.append(nn.BatchNorm2d(n_feats)) if act == 'relu': m.append(nn.ReLU(True)) elif act == 'prelu': m.append(nn.PReLU(n_feats)) else: raise NotImplementedError super(Upsampler, self).__init__(*m)