import torch import torch.nn as nn import torch.nn.functional as F from munch import munchify from models.gpt_voice.lucidrains_gpt import Transformer from models.tacotron2.taco_utils import get_mask_from_lengths from models.tacotron2.text import symbols from trainer.networks import register_model from utils.util import opt_get class ResBlock(nn.Module): def __init__(self, chan): super().__init__() self.net = nn.Sequential( nn.Conv1d(chan, chan, kernel_size=5, padding = 2), nn.BatchNorm1d(chan), nn.ReLU(), nn.Conv1d(chan, chan, kernel_size=5, padding = 2), nn.BatchNorm1d(chan) ) def forward(self, x): return F.relu(self.net(x) + x) class MelEncoder(nn.Module): def __init__(self, channels, mel_channels=80): super().__init__() self.channels = channels self.encoder = nn.Sequential(nn.Conv1d(mel_channels, channels//4, kernel_size=7, padding=3), ResBlock(channels//4), ResBlock(channels//4), nn.Conv1d(channels//4, channels//2, kernel_size=5, stride=2, padding=2), nn.BatchNorm1d(channels//2), nn.ReLU(), ResBlock(channels//2), ResBlock(channels//2), ResBlock(channels//2), nn.Conv1d(channels//2, channels, kernel_size=5, stride=2, padding=2), ResBlock(channels), ResBlock(channels), ResBlock(channels) ) def forward(self, x): return self.encoder(x) class GptAsr(nn.Module): MAX_SYMBOLS_PER_PHRASE = 200 MAX_MEL_FRAMES = 1000 // 4 NUMBER_SYMBOLS = len(symbols) NUMBER_TEXT_TOKENS = NUMBER_SYMBOLS def __init__(self, layers=8, model_dim=512, heads=8): super().__init__() self.model_dim = model_dim self.max_mel_frames = self.MAX_MEL_FRAMES self.text_embedding = nn.Embedding(self.NUMBER_TEXT_TOKENS, model_dim) self.mel_encoder = MelEncoder(model_dim) self.text_pos_embedding = nn.Embedding(self.MAX_SYMBOLS_PER_PHRASE, model_dim) self.mel_pos_embedding = nn.Embedding(self.MAX_MEL_FRAMES, model_dim) self.gpt = Transformer(dim=model_dim, depth=layers, seq_len=1+self.MAX_SYMBOLS_PER_PHRASE+self.MAX_MEL_FRAMES, heads=heads, attn_dropout=.1, ff_dropout=.1, non_causal_sequence_partition=self.MAX_MEL_FRAMES) self.final_norm = nn.LayerNorm(model_dim) self.text_head = nn.Linear(model_dim, self.NUMBER_TEXT_TOKENS) def forward(self, mel_inputs, text_targets): text_targets = F.pad(text_targets, (0, self.MAX_SYMBOLS_PER_PHRASE-text_targets.shape[1])) text_emb = self.text_embedding(text_targets) text_emb = text_emb + self.text_pos_embedding(torch.arange(text_emb.shape[1], device=text_targets.device)) mel_emb = self.mel_encoder(mel_inputs) mel_emb = F.pad(mel_emb, (0, self.MAX_MEL_FRAMES-mel_emb.shape[-1])) mel_emb = mel_emb.permute(0,2,1).contiguous() mel_emb = mel_emb + self.mel_pos_embedding(torch.arange(mel_emb.shape[1], device=mel_emb.device)) emb = torch.cat([mel_emb, text_emb], dim=1) enc = self.gpt(emb) # Compute loss text_logits = self.final_norm(enc[:, self.MAX_MEL_FRAMES:]) text_logits = self.text_head(text_logits) text_logits = text_logits.permute(0,2,1) loss_text = F.cross_entropy(text_logits[:,:,1:], text_targets[:,:-1].long()) return loss_text.mean() @register_model def register_gpt_asr(opt_net, opt): return GptAsr(**opt_get(opt_net, ['kwargs'], {})) if __name__ == '__main__': gpt = GptAsr() l = gpt(torch.randn(2,80,800), torch.randint(high=len(symbols), size=(2,180))) print(l.shape) #o = gpt.infer(torch.randint(high=24, size=(2,60))) #print(o.shape)