import torch from torch import nn from switched_conv import BareConvSwitch, compute_attention_specificity import torch.nn.functional as F import functools from collections import OrderedDict from models.archs.arch_util import initialize_weights, ConvBnRelu, ConvBnLelu, ConvBnSilu from models.archs.RRDBNet_arch import ResidualDenseBlock_5C from models.archs.spinenet_arch import SpineNet from switched_conv_util import save_attention_to_image class MultiConvBlock(nn.Module): def __init__(self, filters_in, filters_mid, filters_out, kernel_size, depth, scale_init=1, bn=False): assert depth >= 2 super(MultiConvBlock, self).__init__() self.noise_scale = nn.Parameter(torch.full((1,), fill_value=.01)) self.bnconvs = nn.ModuleList([ConvBnLelu(filters_in, filters_mid, kernel_size, bn=bn, bias=False)] + [ConvBnLelu(filters_mid, filters_mid, kernel_size, bn=bn, bias=False) for i in range(depth-2)] + [ConvBnLelu(filters_mid, filters_out, kernel_size, lelu=False, bn=False, bias=False)]) self.scale = nn.Parameter(torch.full((1,), fill_value=scale_init)) self.bias = nn.Parameter(torch.zeros(1)) def forward(self, x, noise=None): if noise is not None: noise = noise * self.noise_scale x = x + noise for m in self.bnconvs: x = m.forward(x) return x * self.scale + self.bias # VGG-style layer with Conv(stride2)->BN->Activation->Conv->BN->Activation # Doubles the input filter count. class HalvingProcessingBlock(nn.Module): def __init__(self, filters): super(HalvingProcessingBlock, self).__init__() self.bnconv1 = ConvBnLelu(filters, filters * 2, stride=2, bn=False, bias=False) self.bnconv2 = ConvBnLelu(filters * 2, filters * 2, bn=True, bias=False) def forward(self, x): x = self.bnconv1(x) return self.bnconv2(x) # Creates a nested series of convolutional blocks. Each block processes the input data in-place and adds # filter_growth filters. Return is (nn.Sequential, ending_filters) def create_sequential_growing_processing_block(filters_init, filter_growth, num_convs): convs = [] current_filters = filters_init for i in range(num_convs): convs.append(ConvBnSilu(current_filters, current_filters + filter_growth, bn=True, bias=False)) current_filters += filter_growth return nn.Sequential(*convs), current_filters class ConfigurableSwitchComputer(nn.Module): def __init__(self, base_filters, multiplexer_net, pre_transform_block, transform_block, transform_count, init_temp=20, enable_negative_transforms=False, add_scalable_noise_to_transforms=False, init_scalar=1): super(ConfigurableSwitchComputer, self).__init__() self.enable_negative_transforms = enable_negative_transforms tc = transform_count if self.enable_negative_transforms: tc = transform_count * 2 self.multiplexer = multiplexer_net(tc) self.pre_transform = pre_transform_block() self.transforms = nn.ModuleList([transform_block() for _ in range(transform_count)]) self.add_noise = add_scalable_noise_to_transforms self.noise_scale = nn.Parameter(torch.full((1,), float(1e-3))) # And the switch itself, including learned scalars self.switch = BareConvSwitch(initial_temperature=init_temp) self.switch_scale = nn.Parameter(torch.full((1,), float(init_scalar))) self.post_switch_conv = ConvBnLelu(base_filters, base_filters, bn=False, bias=False) # The post_switch_conv gets a near-zero scale. The network can decide to magnify it (or not) depending on its needs. self.psc_scale = nn.Parameter(torch.full((1,), float(1e-3))) self.bias = nn.Parameter(torch.zeros(1)) def forward(self, x, output_attention_weights=False): identity = x if self.add_noise: rand_feature = torch.randn_like(x) * self.noise_scale x = x + rand_feature x = self.pre_transform(x) xformed = [t.forward(x) for t in self.transforms] if self.enable_negative_transforms: xformed.extend([-t for t in xformed]) m = self.multiplexer(identity) # Interpolate the multiplexer across the entire shape of the image. m = F.interpolate(m, size=xformed[0].shape[2:], mode='nearest') outputs, attention = self.switch(xformed, m, True) outputs = identity + outputs * self.switch_scale outputs = identity + self.post_switch_conv(outputs) * self.psc_scale outputs = outputs + self.bias if output_attention_weights: return outputs, attention else: return outputs def set_temperature(self, temp): self.switch.set_attention_temperature(temp) class ConvBasisMultiplexer(nn.Module): def __init__(self, input_channels, base_filters, growth, reductions, processing_depth, multiplexer_channels, use_bn=True): super(ConvBasisMultiplexer, self).__init__() self.filter_conv = ConvBnSilu(input_channels, base_filters, bias=True) self.reduction_blocks = nn.Sequential(OrderedDict([('block%i:' % (i,), HalvingProcessingBlock(base_filters * 2 ** i)) for i in range(reductions)])) reduction_filters = base_filters * 2 ** reductions self.processing_blocks, self.output_filter_count = create_sequential_growing_processing_block(reduction_filters, growth, processing_depth) gap = self.output_filter_count - multiplexer_channels # Hey silly - if you're going to interpolate later, do it here instead. Then add some processing layers to let the model adjust it properly. self.cbl1 = ConvBnSilu(self.output_filter_count, self.output_filter_count - (gap // 2), bn=use_bn, bias=False) self.cbl2 = ConvBnSilu(self.output_filter_count - (gap // 2), self.output_filter_count - (3 * gap // 4), bn=use_bn, bias=False) self.cbl3 = ConvBnSilu(self.output_filter_count - (3 * gap // 4), multiplexer_channels, bias=True) def forward(self, x): x = self.filter_conv(x) x = self.reduction_blocks(x) x = self.processing_blocks(x) x = self.cbl1(x) x = self.cbl2(x) x = self.cbl3(x) return x class SpineNetMultiplexer(nn.Module): def __init__(self, input_channels, transform_count): super(SpineNetMultiplexer, self).__init__() self.backbone = SpineNet('49', in_channels=input_channels) self.rdc1 = ConvBnSilu(256, 128, kernel_size=3, bias=False) self.rdc2 = ConvBnSilu(128, 64, kernel_size=3, bias=False) self.rdc3 = ConvBnSilu(64, transform_count, bias=False, bn=False, relu=False) def forward(self, x): spine = self.backbone(x) feat = self.rdc1(spine[0]) feat = self.rdc2(feat) feat = self.rdc3(feat) return feat class ConfigurableSwitchedResidualGenerator2(nn.Module): def __init__(self, switch_filters, switch_growths, switch_reductions, switch_processing_layers, trans_counts, trans_kernel_sizes, trans_layers, transformation_filters, initial_temp=20, final_temperature_step=50000, heightened_temp_min=1, heightened_final_step=50000, upsample_factor=1, enable_negative_transforms=False, add_scalable_noise_to_transforms=False): super(ConfigurableSwitchedResidualGenerator2, self).__init__() switches = [] self.initial_conv = ConvBnLelu(3, transformation_filters, bn=False, lelu=False, bias=True) self.sw_conv = ConvBnLelu(transformation_filters, transformation_filters, lelu=False, bias=True) self.upconv1 = ConvBnLelu(transformation_filters, transformation_filters, bn=False, bias=True) self.upconv2 = ConvBnLelu(transformation_filters, transformation_filters, bn=False, bias=True) self.hr_conv = ConvBnLelu(transformation_filters, transformation_filters, bn=False, bias=True) self.final_conv = ConvBnLelu(transformation_filters, 3, bn=False, lelu=False, bias=True) for filters, growth, sw_reduce, sw_proc, trans_count, kernel, layers in zip(switch_filters, switch_growths, switch_reductions, switch_processing_layers, trans_counts, trans_kernel_sizes, trans_layers): multiplx_fn = functools.partial(ConvBasisMultiplexer, transformation_filters, filters, growth, sw_reduce, sw_proc, trans_count) switches.append(ConfigurableSwitchComputer(transformation_filters, multiplx_fn, pre_transform_block=functools.partial(ConvBnLelu, transformation_filters, transformation_filters, bn=False, bias=False), transform_block=functools.partial(MultiConvBlock, transformation_filters, transformation_filters + growth, transformation_filters, kernel_size=kernel, depth=layers), transform_count=trans_count, init_temp=initial_temp, enable_negative_transforms=enable_negative_transforms, add_scalable_noise_to_transforms=add_scalable_noise_to_transforms, init_scalar=.2)) self.switches = nn.ModuleList(switches) self.transformation_counts = trans_counts self.init_temperature = initial_temp self.final_temperature_step = final_temperature_step self.heightened_temp_min = heightened_temp_min self.heightened_final_step = heightened_final_step self.attentions = None self.upsample_factor = upsample_factor def forward(self, x): x = self.initial_conv(x) self.attentions = [] swx = x for i, sw in enumerate(self.switches): swx, att = sw.forward(swx, True) self.attentions.append(att) x = swx + self.sw_conv(x) assert x == 2 or x == 4 x = self.upconv1(F.interpolate(x, scale_factor=2, mode="nearest")) if self.upsample_factor > 2: x = F.interpolate(x, scale_factor=2, mode="nearest") x = self.upconv2(x) return self.final_conv(self.hr_conv(x)), def set_temperature(self, temp): [sw.set_temperature(temp) for sw in self.switches] def update_for_step(self, step, experiments_path='.'): if self.attentions: temp = max(1, int(self.init_temperature * (self.final_temperature_step - step) / self.final_temperature_step)) if temp == 1 and self.heightened_final_step and self.heightened_final_step != 1: # Once the temperature passes (1) it enters an inverted curve to match the linear curve from above. # without this, the attention specificity "spikes" incredibly fast in the last few iterations. h_steps_total = self.heightened_final_step - self.final_temperature_step h_steps_current = min(step - self.final_temperature_step, h_steps_total) # The "gap" will represent the steps that need to be traveled as a linear function. h_gap = 1 / self.heightened_temp_min temp = h_gap * h_steps_current / h_steps_total # Invert temperature to represent reality on this side of the curve temp = 1 / temp self.set_temperature(temp) if step % 50 == 0: [save_attention_to_image(experiments_path, self.attentions[i], self.transformation_counts[i], step, "a%i" % (i+1,)) for i in range(len(self.switches))] def get_debug_values(self, step): temp = self.switches[0].switch.temperature mean_hists = [compute_attention_specificity(att, 2) for att in self.attentions] means = [i[0] for i in mean_hists] hists = [i[1].clone().detach().cpu().flatten() for i in mean_hists] val = {"switch_temperature": temp} for i in range(len(means)): val["switch_%i_specificity" % (i,)] = means[i] val["switch_%i_histogram" % (i,)] = hists[i] return val class Interpolate(nn.Module): def __init__(self, factor): super(Interpolate, self).__init__() self.factor = factor def forward(self, x): return F.interpolate(x, scale_factor=self.factor) class ConfigurableSwitchedResidualGenerator3(nn.Module): def __init__(self, trans_counts, trans_kernel_sizes, trans_layers, transformation_filters, initial_temp=20, final_temperature_step=50000, heightened_temp_min=1, heightened_final_step=50000, upsample_factor=1, enable_negative_transforms=False, add_scalable_noise_to_transforms=False): super(ConfigurableSwitchedResidualGenerator3, self).__init__() switches = [] for trans_count, kernel, layers in zip(trans_counts, trans_kernel_sizes, trans_layers): multiplx_fn = functools.partial(SpineNetMultiplexer, 3) switches.append(ConfigurableSwitchComputer(base_filters=3, multiplexer_net=multiplx_fn, pre_transform_block=functools.partial(nn.Sequential, ConvBnLelu(3, transformation_filters, kernel_size=1, stride=4, bn=False, lelu=False, bias=False), ResidualDenseBlock_5C( transformation_filters), ResidualDenseBlock_5C( transformation_filters)), transform_block=functools.partial(nn.Sequential, ResidualDenseBlock_5C(transformation_filters), Interpolate(4), ConvBnLelu(transformation_filters, transformation_filters // 2, kernel_size=3, bias=False, bn=False), ConvBnLelu(transformation_filters // 2, 3, kernel_size=1, bias=False, bn=False, lelu=False)), transform_count=trans_count, init_temp=initial_temp, enable_negative_transforms=enable_negative_transforms, add_scalable_noise_to_transforms=add_scalable_noise_to_transforms, init_scalar=.01)) self.switches = nn.ModuleList(switches) self.transformation_counts = trans_counts self.init_temperature = initial_temp self.final_temperature_step = final_temperature_step self.heightened_temp_min = heightened_temp_min self.heightened_final_step = heightened_final_step self.attentions = None self.upsample_factor = upsample_factor def forward(self, x): if self.upsample_factor > 1: x = F.interpolate(x, scale_factor=self.upsample_factor, mode="nearest") self.attentions = [] for i, sw in enumerate(self.switches): x, att = sw.forward(x, True) self.attentions.append(att) return x, def set_temperature(self, temp): [sw.set_temperature(temp) for sw in self.switches] def update_for_step(self, step, experiments_path='.'): if self.attentions: temp = max(1, int( self.init_temperature * (self.final_temperature_step - step) / self.final_temperature_step)) if temp == 1 and self.heightened_final_step and self.heightened_final_step != 1: # Once the temperature passes (1) it enters an inverted curve to match the linear curve from above. # without this, the attention specificity "spikes" incredibly fast in the last few iterations. h_steps_total = self.heightened_final_step - self.final_temperature_step h_steps_current = min(step - self.final_temperature_step, h_steps_total) # The "gap" will represent the steps that need to be traveled as a linear function. h_gap = 1 / self.heightened_temp_min temp = h_gap * h_steps_current / h_steps_total # Invert temperature to represent reality on this side of the curve temp = 1 / temp self.set_temperature(temp) if step % 50 == 0: [save_attention_to_image(experiments_path, self.attentions[i], self.transformation_counts[i], step, "a%i" % (i + 1,)) for i in range(len(self.switches))] def get_debug_values(self, step): temp = self.switches[0].switch.temperature mean_hists = [compute_attention_specificity(att, 2) for att in self.attentions] means = [i[0] for i in mean_hists] hists = [i[1].clone().detach().cpu().flatten() for i in mean_hists] val = {"switch_temperature": temp} for i in range(len(means)): val["switch_%i_specificity" % (i,)] = means[i] val["switch_%i_histogram" % (i,)] = hists[i] return val