import torch import torch.nn.functional as F class ZeroPadDictCollate(): """ Given a list of dictionary outputs with torch.Tensors from a Dataset, iterates through each one, finds the longest tensor, and zero pads all the other tensors together. """ def collate_tensors(self, batch, key): result = [] largest_dims = [0 for _ in range(len(batch[0][key].shape))] for elem in batch: result.append(elem[key]) largest_dims = [max(current_largest, new_consideration) for current_largest, new_consideration in zip(largest_dims, elem[key].shape)] # Now pad each tensor by the largest dimension. for i in range(len(result)): padding_tuple = () for d in range(len(largest_dims)): padding_needed = largest_dims[d] - result[i].shape[d] assert padding_needed >= 0 padding_tuple = (0, padding_needed) + padding_tuple result[i] = F.pad(result[i], padding_tuple) return torch.stack(result, dim=0) def collate_into_list(self, batch, key): result = [] for elem in batch: result.append(elem[key]) return result def __call__(self, batch): first_dict = batch[0] collated = {} for key in first_dict.keys(): if isinstance(first_dict[key], torch.Tensor): if len(first_dict[key].shape) > 0: collated[key] = self.collate_tensors(batch, key) else: collated[key] = torch.stack(batch[key]) else: collated[key] = self.collate_into_list(batch, key) return collated