import math import torch import torch.nn as nn import switched_conv_cuda_naive from lambda_networks import LambdaLayer from torch.nn import init, Conv2d, MSELoss import torch.nn.functional as F from tqdm import tqdm import torch.distributed as dist from trainer.losses import ConfigurableLoss def SwitchedConvRoutingNormal(input, selector, weight, bias, stride=1): convs = [] b, s, h, w = selector.shape for sel in range(s): convs.append(F.conv2d(input, weight[:, :, sel, :, :], bias, stride=stride, padding=weight.shape[-1] // 2)) output = torch.stack(convs, dim=1) * selector.unsqueeze(dim=2) return output.sum(dim=1) class SwitchedConvHardRoutingFunction(torch.autograd.Function): @staticmethod def forward(ctx, input, selector, weight, bias, stride=1): # Build hard attention mask from selector input b, s, h, w = selector.shape mask = selector.argmax(dim=1).int() output = switched_conv_cuda_naive.forward(input, mask, weight, bias, stride) ctx.stride = stride ctx.breadth = s ctx.save_for_backward(*[input, mask, weight, bias]) return output @staticmethod def backward(ctx, grad): input, mask, weight, bias = ctx.saved_tensors grad, grad_sel, grad_w, grad_b = switched_conv_cuda_naive.backward(input, grad.contiguous(), mask, weight, bias, ctx.stride) return grad, grad_sel, grad_w, grad_b, None class RouteTop1(torch.autograd.Function): @staticmethod def forward(ctx, input): mask = torch.nn.functional.one_hot(input.argmax(dim=1), num_classes=input.shape[1]).permute(0,3,1,2) out = torch.ones_like(input) out[mask != 1] = 0 ctx.save_for_backward(mask, input.clone()) return out @staticmethod def backward(ctx, grad): # Enable breakpoints in this function: (Comment out if not debugging) #import pydevd #pydevd.settrace(suspend=False, trace_only_current_thread=True) mask, input = ctx.saved_tensors input[mask != 1] = 1 grad_input = grad.clone() grad_input[mask != 1] = 0 grad_input_n = grad_input / input # Above, we made everything either a zero or a one. Unscale the ones by dividing by the unmasked inputs. return grad_input_n """ SwitchNorm is meant to be applied against the Softmax output of an switching function across a large set of switch computations. It is meant to promote an equal distribution of switch weights by decreasing the magnitude of switch weights that are over-used and increasing the magnitude of under-used weights. The return value has the exact same format as a normal Softmax output and can be used directly into the input of an switch equation. Since the whole point of convolutional switch is to enable training extra-wide networks to operate on a large number of image categories, it makes almost no sense to perform this type of norm against a single mini-batch of images: some of the switches will not be used in such a small context - and that's good! This is solved by accumulating. Every forward pass computes a norm across the current minibatch. That norm is added into a rotating buffer of size . The actual normalization occurs across the entire rotating buffer. You should set accumulator size according to two factors: - Your batch size. Smaller batch size should mean greater accumulator size. - Your image diversity. More diverse images have less need for the accumulator. - How wide your switch/switching group size is. More groups mean you're going to want more accumulation. Note: This norm makes the (potentially flawed) assumption that each forward() pass has unique data. For maximum effectiveness, avoid doing this - or make alterations to work around it. Note: This norm does nothing for the first iterations. """ class SwitchNorm(nn.Module): def __init__(self, group_size, accumulator_size=128): super().__init__() self.accumulator_desired_size = accumulator_size self.group_size = group_size self.register_buffer("accumulator_index", torch.zeros(1, dtype=torch.long, device='cpu')) self.register_buffer("accumulator_filled", torch.zeros(1, dtype=torch.long, device='cpu')) self.register_buffer("accumulator", torch.zeros(accumulator_size, group_size)) def add_norm_to_buffer(self, x): flat = x.sum(dim=[0, 2, 3]) norm = flat / torch.mean(flat) self.accumulator[self.accumulator_index] = norm.detach().clone() self.accumulator_index += 1 if self.accumulator_index >= self.accumulator_desired_size: self.accumulator_index *= 0 if self.accumulator_filled <= 0: self.accumulator_filled += 1 # Input into forward is a switching tensor of shape (batch,groups,width,height) def forward(self, x: torch.Tensor, update_attention_norm=True): assert len(x.shape) == 4 # Push the accumulator to the right device on the first iteration. if self.accumulator.device != x.device: self.accumulator = self.accumulator.to(x.device) # In eval, don't change the norm buffer. if self.training and update_attention_norm: self.add_norm_to_buffer(x) # Reduce across all distributed entities, if needed if dist.is_available() and dist.is_initialized(): dist.all_reduce(self.accumulator, op=dist.ReduceOp.SUM) self.accumulator /= dist.get_world_size() # Compute the norm factor. if self.accumulator_filled > 0: norm = torch.mean(self.accumulator, dim=0) else: norm = torch.ones(self.group_size, device=self.accumulator.device) x = x / norm.view(1,-1,1,1) # Need to re-normalize x so that the groups dimension sum to 1, just like when it was fed in. return x / x.sum(dim=1, keepdim=True) class HardRoutingGate(nn.Module): def __init__(self, breadth): super().__init__() self.norm = SwitchNorm(breadth, accumulator_size=256) def forward(self, x): soft = self.norm(nn.functional.softmax(x, dim=1)) hard = RouteTop1.apply(soft) # This variant can route gradients downstream. return hard class SwitchedConvHardRouting(nn.Module): def __init__(self, in_c, out_c, kernel_sz, breadth, stride=1, bias=True, dropout_rate=0.0, include_coupler: bool = False, # A 'coupler' is a latent converter which can make any bxcxhxw tensor a compatible switchedconv selector by performing a linear 1x1 conv, softmax and interpolate. coupler_mode: str = 'standard', coupler_dim_in: int = 0): super().__init__() self.in_channels = in_c self.out_channels = out_c self.kernel_size = kernel_sz self.stride = stride self.has_bias = bias self.breadth = breadth self.dropout_rate = dropout_rate if include_coupler: if coupler_mode == 'standard': self.coupler = Conv2d(coupler_dim_in, breadth, kernel_size=1, stride=self.stride) elif coupler_mode == 'lambda': self.coupler = nn.Sequential(nn.Conv2d(coupler_dim_in, coupler_dim_in, 1), nn.BatchNorm2d(coupler_dim_in), nn.ReLU(), LambdaLayer(dim=coupler_dim_in, dim_out=breadth, r=23, dim_k=16, heads=2, dim_u=1), nn.BatchNorm2d(breadth), nn.ReLU(), Conv2d(breadth, breadth, 1, stride=self.stride)) else: self.coupler = None self.gate = HardRoutingGate(breadth) self.weight = nn.Parameter(torch.empty(out_c, in_c, breadth, kernel_sz, kernel_sz)) if bias: self.bias = nn.Parameter(torch.empty(out_c)) else: self.bias = torch.zeros(out_c) self.reset_parameters() def reset_parameters(self) -> None: init.kaiming_uniform_(self.weight, a=math.sqrt(5)) if self.bias is not None: fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight[:,:,0,:,:]) bound = 1 / math.sqrt(fan_in) init.uniform_(self.bias, -bound, bound) def load_weights_from_conv(self, cnv): sd = cnv.state_dict() sd['weight'] = sd['weight'].unsqueeze(2).repeat(1,1,self.breadth,1,1) self.load_state_dict(sd) def forward(self, input, selector=None): if self.bias.device != input.device: self.bias = self.bias.to(input.device) # Because this bias can be a tensor that is not moved with the rest of the module. # If a coupler was specified, run that to convert selector into a softmax distribution. if self.coupler: if selector is None: # A coupler can convert from any input to a selector, so 'None' is allowed. selector = input selector = self.coupler(selector) assert selector is not None # Apply dropout at the batch level per kernel. if self.training and self.dropout_rate > 0: b, c, h, w = selector.shape drop = torch.rand((b, c, 1, 1), device=input.device) > self.dropout_rate # Ensure that there is always at least one switch left un-dropped out fix_blank = (drop.sum(dim=1, keepdim=True) == 0).repeat(1, c, 1, 1) drop = drop.logical_or(fix_blank) selector = drop * selector selector = self.gate(selector) # Debugging variables self.last_select = selector.detach().clone() self.latest_masks = (selector.max(dim=1, keepdim=True)[0].repeat(1,self.breadth,1,1) == selector).float().argmax(dim=1) if False: # This is a custom CUDA implementation which should be faster and less memory intensive (once completed). return SwitchedConvHardRoutingFunction.apply(input, selector, self.weight, self.bias, self.stride) else: # This composes the switching functionality using raw Torch, which basically consists of computing each of convs separately and combining them. return SwitchedConvRoutingNormal(input, selector, self.weight, self.bias, self.stride) # Given a state_dict and the module that that sd belongs to, strips out all Conv2d.weight parameters and replaces them # with the equivalent SwitchedConv.weight parameters. Does not create coupler params. def convert_conv_net_state_dict_to_switched_conv(module, switch_breadth, ignore_list=[]): state_dict = module.state_dict() for name, m in module.named_modules(): if not isinstance(m, nn.Conv2d): continue ignored = False for smod in ignore_list: if smod in name: ignored = True continue if ignored: continue if name == '': key = 'weight' else: key = f'{name}.weight' state_dict[key] = state_dict[key].unsqueeze(2).repeat(1,1,switch_breadth,1,1) return state_dict def test_net(): for j in tqdm(range(100)): base_conv = Conv2d(32, 64, 3, stride=2, padding=1, bias=True).to('cuda') mod_conv = SwitchedConvHardRouting(32, 64, 3, breadth=8, stride=2, bias=True, include_coupler=True, coupler_dim_in=32, dropout_rate=.2).to('cuda') mod_sd = convert_conv_net_state_dict_to_switched_conv(base_conv, 8) mod_conv.load_state_dict(mod_sd, strict=False) inp = torch.randn((128,32,128,128), device='cuda') out1 = base_conv(inp) out2 = mod_conv(inp, None) compare = (out2+torch.rand_like(out2)*1e-6).detach() MSELoss()(out2, compare).backward() assert(torch.max(torch.abs(out1-out2)) < 1e-5) if __name__ == '__main__': test_net()