from itertools import groupby import torch import torchaudio from transformers import Wav2Vec2CTCTokenizer from data.audio.voice_tokenizer import VoiceBpeTokenizer from models.audio.tts.ctc_code_generator import CtcCodeGenerator from models.audio.tts.transformer_diffusion_tts import TransformerDiffusionTTS from scripts.audio.gen.speech_synthesis_utils import load_discrete_vocoder_diffuser, load_univnet_vocoder, load_clvp from trainer.injectors.audio_injectors import TorchMelSpectrogramInjector, denormalize_mel from utils.util import load_audio def get_ctc_metadata(codes): if isinstance(codes, torch.Tensor): codes = codes.tolist() grouped = groupby(codes) rcodes, repeats, pads = [], [], [0] for val, group in grouped: if val == 0: pads[-1] = len(list( group)) # This is a very important distinction! It means the padding belongs to the character proceeding it. else: rcodes.append(val) repeats.append(len(list(group))) pads.append(0) rcodes = torch.tensor(rcodes) # These clip values are sane maximum values which I did not see in the datasets I have access to. repeats = torch.clip(torch.tensor(repeats), min=1, max=30) pads = torch.clip(torch.tensor(pads[:-1]), max=120) return rcodes, pads, repeats def decode_ctc_metadata(rcodes, pads, repeats): outp = [] for s in range(rcodes.shape[-1]): outp = outp + [0 for _ in range(pads[s])] outp = outp + [rcodes[s].item() for _ in range(repeats[s])] return torch.tensor(outp, device=rcodes.device) def diffuse(text, codes, cond): RATIO = 263/140 codes = codes.cuda(); cond = cond.cuda() bpe_tokenizer = VoiceBpeTokenizer('../experiments/bpe_lowercase_asr_256.json') clvp = load_clvp().cuda() diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=200, schedule='linear', enable_conditioning_free_guidance=False, conditioning_free_k=1) diffusion_model = TransformerDiffusionTTS(model_channels=896, num_layers=16, in_channels=100, in_latent_channels=1024, token_count=256, out_channels=200, dropout=0, unconditioned_percentage=0) diffusion_model.load_state_dict(torch.load('X:\\dlas\\experiments\\train_speech_diffusion_from_ctc_tfd5\\models\\26500_generator_ema.pth')) diffusion_model = diffusion_model.cuda().eval() with torch.no_grad(): text_codes = torch.LongTensor(bpe_tokenizer.encode(text)).unsqueeze(0).to(codes.device) clvp_latent = clvp.embed_text(text_codes) cond_mel = TorchMelSpectrogramInjector({'n_mel_channels': 100, 'mel_fmax': 11000, 'filter_length': 8000, 'normalize': True, 'true_normalization': True, 'in': 'in', 'out': 'out'}, {})({'in': cond})['out'] gen = diffuser.p_sample_loop(diffusion_model, (1,100,int(codes.shape[-1]*RATIO)), model_kwargs={'codes': codes, 'conditioning_input': cond_mel, 'type': torch.tensor([0], device=codes.device), 'clvp_input': clvp_latent}) gen_denorm = denormalize_mel(gen) vocoder = load_univnet_vocoder().cuda() gen_wav = vocoder.inference(gen_denorm) return gen_wav if __name__ == '__main__': model = CtcCodeGenerator(model_dim=512, layers=16, dropout=0).eval().cuda() model.load_state_dict(torch.load('../experiments/train_encoder_build_ctc_alignments_toy/models/76000_generator_ema.pth')) tokenizer = Wav2Vec2CTCTokenizer.from_pretrained('jbetker/tacotron-symbols') text = "Can I have tea and a pot of butter, please?" #seq = [0, 0, 0, 38, 51, 51, 41, 11, 11, 51, 51, 0, 0, 0, 0, 52, 0, 60, 0, 0, 0, 0, 0, 0, 6, 11, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 60, 45, 0, 38, 57, 57, 11, 0, 41, 52, 52, 11, 11, 62, 52, 52, 58, 0, 11, 11, 60, 0, 0, 0, 0, 38, 0, 0, 51, 51, 0, 0, 57, 0, 0, 7, 7, 0, 0, 0] #codes, pads, repeats = get_ctc_metadata(seq) codes = tokenizer.encode(text) with torch.no_grad(): codes = torch.tensor(codes).cuda().unsqueeze(0) ppads = torch.zeros_like(codes) prepeats = torch.zeros_like(codes) mask = torch.zeros_like(codes) for s in range(codes.shape[-1]): logits, confidences = model.inference(codes, ppads * mask, prepeats * mask) confidences = confidences * mask.logical_not() # prevent prediction of tokens that have already been predicted. i = confidences.argmax(dim=-1) pred = logits[0,i].argmax() pred_pads = pred % model.max_pad pred_repeats = pred // model.max_pad ppads[0,i] = pred_pads prepeats[0,i] = pred_repeats mask[0,i] = 1 #print(f"conf: {conf_str} pads={pred_pads}:{pads[0,i].item()} repeats={pred_repeats}:{repeats[0,i].item()}") decoded_codes = decode_ctc_metadata(codes[0], ppads[0], prepeats[0]).unsqueeze(0) cond = load_audio('D:\\tortoise-tts\\tortoise\\voices\\train_dotrice\\1.wav', 22050).unsqueeze(0).cuda() decoded_wav = diffuse(text, decoded_codes, cond) torchaudio.save('output.wav', decoded_wav.cpu()[0], 24000)