import torch import torch.nn as nn import torch.nn.functional as F from models.arch_util import ConvGnSilu from models.tacotron2.taco_utils import get_mask_from_lengths from models.tacotron2.text import symbols from models.gpt_voice.min_gpt import GPT, GPTConfig from trainer.networks import register_model class GptTts(nn.Module): def __init__(self): super().__init__() number_symbols = len(symbols) model_dim = 512 max_symbols_per_phrase = 200 max_mel_frames = 900 mel_dim=80 self.text_embedding = nn.Embedding(number_symbols, model_dim) self.mel_encoder = nn.Sequential(ConvGnSilu(mel_dim, model_dim//2, kernel_size=3, convnd=nn.Conv1d), ConvGnSilu(model_dim//2, model_dim, kernel_size=3, stride=2, convnd=nn.Conv1d)) self.text_tags = nn.Parameter(torch.randn(1, 1, model_dim)/256.0) self.audio_tags = nn.Parameter(torch.randn(1, 1, model_dim)/256.0) self.gpt = GPT(GPTConfig(max_symbols_per_phrase+max_mel_frames//2, n_embd=model_dim, n_head=8)) self.gate_head = nn.Sequential(ConvGnSilu(model_dim, model_dim, kernel_size=5, convnd=nn.Conv1d), nn.Upsample(scale_factor=2, mode='nearest'), ConvGnSilu(model_dim, model_dim//2, kernel_size=5, convnd=nn.Conv1d), nn.Conv1d(model_dim//2, 1, kernel_size=1)) self.mel_head = nn.Sequential(ConvGnSilu(model_dim, model_dim, kernel_size=5, convnd=nn.Conv1d), nn.Upsample(scale_factor=2, mode='nearest'), ConvGnSilu(model_dim, model_dim//2, kernel_size=5, convnd=nn.Conv1d), ConvGnSilu(model_dim//2, model_dim//2, kernel_size=5, convnd=nn.Conv1d), ConvGnSilu(model_dim//2, mel_dim, kernel_size=1, activation=False, norm=False, convnd=nn.Conv1d)) def forward(self, text_inputs, mel_targets, output_lengths): # Pad mel_targets to be a multiple of 2 padded = mel_targets.shape[-1] % 2 != 0 if padded: mel_targets = F.pad(mel_targets, (0,1)) text_emb = self.text_embedding(text_inputs) text_emb = text_emb + self.text_tags mel_emb = self.mel_encoder(mel_targets).permute(0,2,1) mel_emb = mel_emb + self.audio_tags emb = torch.cat([text_emb, mel_emb], dim=1) enc = self.gpt(emb) mel_portion = enc[:, text_emb.shape[1]:].permute(0,2,1) gates = self.gate_head(mel_portion).squeeze(1) mel_pred = self.mel_head(mel_portion) # Mask portions of output which we don't need to predict. mask = ~get_mask_from_lengths(output_lengths, mel_pred.shape[-1]) mask = mask.unsqueeze(1).repeat(1, mel_pred.shape[1], 1) mel_pred.data.masked_fill_(mask, 0) gates.data.masked_fill_(mask[:, 0, :], 1e3) if padded: mel_pred = mel_pred[:, :, :-1] gates = gates[:, :-1] return mel_pred, gates @register_model def register_gpt_tts(opt_net, opt): return GptTts() if __name__ == '__main__': gpt = GptTts() m, g = gpt(torch.randint(high=24, size=(2,60)), torch.randn(2,80,747), torch.tensor([600,747])) print(m.shape) print(g.shape)