import torch import torch.nn as nn import torch.nn.functional as F from x_transformers import Encoder, XTransformer from models.gpt_voice.unet_diffusion_tts6 import CheckpointedLayer from trainer.networks import register_model from utils.util import opt_get class CheckpointedXTransformerEncoder(nn.Module): """ Wraps a ContinuousTransformerWrapper and applies CheckpointedLayer to each layer and permutes from channels-mid to channels-last that XTransformer expects. """ def __init__(self, **xtransformer_kwargs): super().__init__() self.transformer = XTransformer(**xtransformer_kwargs) for xform in [self.transformer.encoder, self.transformer.decoder.net]: for i in range(len(xform.attn_layers.layers)): n, b, r = xform.attn_layers.layers[i] xform.attn_layers.layers[i] = nn.ModuleList([n, CheckpointedLayer(b), r]) def forward(self, *args, **kwargs): return self.transformer(*args, **kwargs) class CtcCodeGenerator(nn.Module): def __init__(self, model_dim=512, layers=10, num_heads=8, dropout=.1, ctc_codes=36, max_pad=120, max_repeat=30): super().__init__() self.max_pad = max_pad self.max_repeat = max_repeat self.transformer = XTransformer( dim=model_dim, enc_depth=layers, dec_depth=layers, enc_heads=num_heads, dec_heads=num_heads, enc_num_tokens=ctc_codes, dec_num_tokens=(max_pad+1)*(max_repeat+1), enc_max_seq_len=-1, dec_max_seq_len=-1, enc_ff_dropout=dropout, enc_attn_dropout=dropout, enc_use_rmsnorm=True, enc_ff_glu=True, enc_rotary_pos_emb=True, dec_ff_dropout=dropout, dec_attn_dropout=dropout, dec_use_rmsnorm=True, dec_ff_glu=True, dec_rotary_pos_emb=True) def forward(self, codes, pads, repeats, unpadded_lengths=None): if unpadded_lengths is not None: max_len = unpadded_lengths.max() codes = codes[:, :max_len] pads = pads[:, :max_len] repeats = repeats[:, :max_len] if pads.max() > self.max_pad: print(f"Got unexpectedly long pads. Max: {pads.max()}, {pads}") pads = torch.clip(pads, 0, self.max_pad) if repeats.max() > self.max_repeat: print(f"Got unexpectedly long repeats. Max: {repeats.max()}, {repeats}") repeats = torch.clip(repeats, 0, self.max_repeat) assert codes.max() < 36, codes.max() labels = pads + repeats * self.max_pad loss = self.transformer(codes, labels) return loss @register_model def register_ctc_code_generator(opt_net, opt): return CtcCodeGenerator(**opt_get(opt_net, ['kwargs'], {})) if __name__ == '__main__': model = CtcCodeGenerator() inps = torch.randint(0,36, (4, 300)) pads = torch.randint(0,100, (4,300)) repeats = torch.randint(0,20, (4,300)) loss = model(inps, pads, repeats) print(loss.shape)