import torch from torch import nn from switched_conv import BareConvSwitch, compute_attention_specificity import torch.nn.functional as F import functools from models.archs.arch_util import initialize_weights import torchvision from torchvision import transforms class ConvBnLelu(nn.Module): def __init__(self, filters_in, filters_out, kernel_size=3, stride=1, lelu=True): super(ConvBnLelu, self).__init__() padding_map = {1: 0, 3: 1, 5: 2, 7: 3} assert kernel_size in padding_map.keys() self.conv = nn.Conv2d(filters_in, filters_out, kernel_size, stride, padding_map[kernel_size]) self.bn = nn.BatchNorm2d(filters_out) if lelu: self.lelu = nn.LeakyReLU(negative_slope=.1) else: self.lelu = None def forward(self, x): x = self.conv(x) x = self.bn(x) if self.lelu: return self.lelu(x) else: return x class ResidualBranch(nn.Module): def __init__(self, filters_in, filters_out, kernel_size, depth): super(ResidualBranch, self).__init__() self.bnconvs = nn.ModuleList([ConvBnLelu(filters_in, filters_out, kernel_size)] + [ConvBnLelu(filters_out, filters_out, kernel_size) for i in range(depth-2)] + [ConvBnLelu(filters_out, filters_out, kernel_size, lelu=False)]) self.scale = nn.Parameter(torch.ones(1)) self.bias = nn.Parameter(torch.zeros(1)) def forward(self, x): for m in self.bnconvs: x = m.forward(x) return x * self.scale + self.bias # VGG-style layer with Conv->BN->Activation->Conv(stride2)->BN->Activation class HalvingProcessingBlock(nn.Module): def __init__(self, filters): super(HalvingProcessingBlock, self).__init__() self.bnconv1 = ConvBnLelu(filters, filters) self.bnconv2 = ConvBnLelu(filters, filters * 2, stride=2) def forward(self, x): x = self.bnconv1(x) return self.bnconv2(x) class SwitchComputer(nn.Module): def __init__(self, channels_in, filters, transform_block, transform_count, reductions, init_temp=20): super(SwitchComputer, self).__init__() self.filter_conv = ConvBnLelu(channels_in, filters) self.blocks = nn.ModuleList([HalvingProcessingBlock(filters * 2 ** i) for i in range(reductions)]) final_filters = filters * 2 ** reductions proc_block_filters = max(final_filters // 2, transform_count) self.proc_switch_conv = ConvBnLelu(final_filters, proc_block_filters) self.final_switch_conv = nn.Conv2d(proc_block_filters, transform_count, 1, 1, 0) # Always include the identity transform (all zeros), hence transform_count-10 self.transforms = nn.ModuleList([transform_block() for i in range(transform_count-1)]) # And the switch itself self.switch = BareConvSwitch(initial_temperature=init_temp) def forward(self, x, output_attention_weights=False): xformed = [t.forward(x) for t in self.transforms] # Append the identity transform. xformed.append(torch.zeros_like(xformed[0])) multiplexer = self.filter_conv(x) for block in self.blocks: multiplexer = block.forward(multiplexer) multiplexer = self.proc_switch_conv(multiplexer) multiplexer = self.final_switch_conv.forward(multiplexer) # Interpolate the multiplexer across the entire shape of the image. multiplexer = F.interpolate(multiplexer, size=x.shape[2:], mode='nearest') return self.switch(xformed, multiplexer, output_attention_weights) def set_temperature(self, temp): self.switch.set_attention_temperature(temp) class SwitchedResidualGenerator(nn.Module): def __init__(self, switch_filters, initial_temp=20, final_temperature_step=50000): super(SwitchedResidualGenerator, self).__init__() self.switch1 = SwitchComputer(3, switch_filters, functools.partial(ResidualBranch, 3, 3, kernel_size=7, depth=3), 4, 4, initial_temp) self.switch2 = SwitchComputer(3, switch_filters, functools.partial(ResidualBranch, 3, 3, kernel_size=5, depth=3), 8, 3, initial_temp) self.switch3 = SwitchComputer(3, switch_filters, functools.partial(ResidualBranch, 3, 3, kernel_size=3, depth=3), 16, 2, initial_temp) self.switch4 = SwitchComputer(3, switch_filters, functools.partial(ResidualBranch, 3, 3, kernel_size=3, depth=2), 32, 1, initial_temp) initialize_weights([self.switch1, self.switch2, self.switch3, self.switch4], 1) # Initialize the transforms with a lesser weight, since they are repeatedly added on to the resultant image. initialize_weights([self.switch1.transforms, self.switch2.transforms, self.switch3.transforms, self.switch4.transforms], .05) self.init_temperature = initial_temp self.final_temperature_step = final_temperature_step self.running_sum = [0, 0, 0, 0] self.running_count = 0 def forward(self, x): sw1, self.a1 = self.switch1.forward(x, True) x = x + sw1 sw2, self.a2 = self.switch2.forward(x, True) x = x + sw2 sw3, self.a3 = self.switch3.forward(x, True) x = x + sw3 sw4, self.a4 = self.switch4.forward(x, True) x = x + sw4 a1mean, _ = compute_attention_specificity(self.a1, 2) a2mean, _ = compute_attention_specificity(self.a2, 2) a3mean, _ = compute_attention_specificity(self.a3, 2) a4mean, _ = compute_attention_specificity(self.a4, 2) running_sum = [ self.running_sum[0] + a1mean, self.running_sum[1] + a2mean, self.running_sum[2] + a3mean, self.running_sum[3] + a4mean, ] self.running_count += 1 return (x,) def set_temperature(self, temp): self.switch1.set_temperature(temp) self.switch2.set_temperature(temp) self.switch3.set_temperature(temp) self.switch4.set_temperature(temp) # Copied from torchvision.utils.save_image. Allows specifying pixel format. def save_image(self, tensor, fp, nrow=8, padding=2, normalize=False, range=None, scale_each=False, pad_value=0, format=None, pix_format=None): from PIL import Image grid = torchvision.utils.make_grid(tensor, nrow=nrow, padding=padding, pad_value=pad_value, normalize=normalize, range=range, scale_each=scale_each) # Add 0.5 after unnormalizing to [0, 255] to round to nearest integer ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to('cpu', torch.uint8).numpy() im = Image.fromarray(ndarr, mode=pix_format).convert('RGB') im.save(fp, format=format) def convert_attention_indices_to_image(self, attention_out, attention_size, step, fname_part="map", l_mult=1.0): magnitude, indices = torch.topk(attention_out, 1, dim=-1) magnitude = magnitude.squeeze(3) indices = indices.squeeze(3) # indices is an integer tensor (b,w,h) where values are on the range [0,attention_size] # magnitude is a float tensor (b,w,h) [0,1] representing the magnitude of that attention. # Use HSV colorspace to show this. Hue is mapped to the indices, Lightness is mapped to intensity, # Saturation is left fixed. hue = indices.float() / attention_size saturation = torch.full_like(hue, .8) value = magnitude * l_mult hsv_img = torch.stack([hue, saturation, value], dim=1) import os os.makedirs("attention_maps/%s" % (fname_part,), exist_ok=True) self.save_image(hsv_img, "attention_maps/%s/attention_map_%i.png" % (fname_part, step,), pix_format="HSV") def get_debug_values(self, step): # Take the chance to update the temperature here. temp = max(1, int(self.init_temperature * (self.final_temperature_step - step) / self.final_temperature_step)) self.set_temperature(temp) if step % 250 == 0: self.convert_attention_indices_to_image(self.a1, 4, step, "a1") self.convert_attention_indices_to_image(self.a2, 8, step, "a2") self.convert_attention_indices_to_image(self.a3, 16, step, "a3", 2) self.convert_attention_indices_to_image(self.a4, 32, step, "a4", 4) val = {"switch_temperature": temp} for i in range(len(self.running_sum)): val["switch_%i_specificity" % (i,)] = self.running_sum[i] / self.running_count self.running_sum[i] = 0 self.running_count = 0 return val