import argparse import os import torch import torchaudio from data.audio.unsupervised_audio_dataset import load_audio from scripts.audio.gen.speech_synthesis_utils import do_spectrogram_diffusion, \ load_discrete_vocoder_diffuser, wav_to_mel, convert_mel_to_codes from utils.audio import plot_spectrogram from utils.util import load_model_from_config def ceil_multiple(base, multiple): res = base % multiple if res == 0: return base return base + (multiple - res) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-opt', type=str, help='Path to options YAML file used to train the diffusion model', default='../options/train_diffusion_tts_medium.yml') parser.add_argument('-diffusion_model_name', type=str, help='Name of the diffusion model in opt.', default='generator') parser.add_argument('-diffusion_model_path', type=str, help='Path to saved model weights', default='X:\\dlas\\experiments\\train_diffusion_tts_medium\\models\\14800_generator_ema.pth') parser.add_argument('-aligned_codes', type=str, help='Comma-delimited list of integer codes that defines text & prosody. Get this by apply W2V to an existing audio clip or from a bespoke generator.', default='0,0,0,0,10,10,0,4,0,7,0,17,4,4,0,25,5,0,13,13,0,22,4,4,0,21,15,15,7,0,0,14,4,4,6,8,4,4,0,0,12,5,0,0,5,0,4,4,22,22,8,16,16,0,4,4,4,0,0,0,0,0,0,0') # Default: 'i am very glad to see you', libritts/train-clean-100/103/1241/103_1241_000017_000001.wav. # -cond "Y:\libritts/train-clean-100/103/1241/103_1241_000017_000001.wav" parser.add_argument('-cond', type=str, help='Path to the conditioning input audio file.', default='Y:\\clips\\books1\\754_Dan Simmons - The Rise Of Endymion 356 of 450\\00026.wav') parser.add_argument('-diffusion_steps', type=int, help='Number of diffusion steps to perform to create the generate. Lower steps reduces quality, but >40 is generally pretty good.', default=100) parser.add_argument('-output_path', type=str, help='Where to store outputs.', default='../results/use_diffuse_tts') args = parser.parse_args() os.makedirs(args.output_path, exist_ok=True) print("Loading Diffusion Model..") diffusion = load_model_from_config(args.opt, args.diffusion_model_name, also_load_savepoint=False, load_path=args.diffusion_model_path) aligned_codes_compression_factor = 221 # Derived empirically for 11025Hz sample rate. Adjust if sample rate increases. print("Loading data..") aligned_codes = torch.tensor([int(s) for s in args.aligned_codes.split(',')]).cuda() diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=args.diffusion_steps) cond = load_audio(args.cond, 22050).cuda() if cond.shape[-1] > 88000: cond = cond[:,:88000] with torch.no_grad(): print("Performing inference..") diffusion.eval() output_shape = (1, 1, ceil_multiple(aligned_codes.shape[-1]*aligned_codes_compression_factor, 2048)) output = diffuser.p_sample_loop(diffusion, output_shape, noise=torch.zeros(output_shape, device='cuda'), model_kwargs={'tokens': aligned_codes.unsqueeze(0), 'conditioning_input': cond.unsqueeze(0)}) torchaudio.save(os.path.join(args.output_path, f'output_mean.wav'), output.cpu().squeeze(0), 11025) for k in range(5): output = diffuser.p_sample_loop(diffusion, output_shape, model_kwargs={'tokens': aligned_codes.unsqueeze(0), 'conditioning_input': cond.unsqueeze(0)}) torchaudio.save(os.path.join(args.output_path, f'output_{k}.wav'), output.cpu().squeeze(0), 11025)