import os import torch import numpy as np import torchaudio import torchvision from models.audio.music.tfdpc_v5 import TransformerDiffusionWithPointConditioning from utils.music_utils import get_cheater_decoder from utils.util import load_audio from trainer.injectors.audio_injectors import TorchMelSpectrogramInjector from trainer.injectors.audio_injectors import MusicCheaterLatentInjector from models.diffusion.respace import SpacedDiffusion from models.diffusion.respace import space_timesteps from models.diffusion.gaussian_diffusion import get_named_beta_schedule from models.audio.music.transformer_diffusion12 import TransformerDiffusionWithCheaterLatent def join_music(clip1, clip1_cut, clip2, clip2_cut, mix_time, results_dir): with torch.no_grad(): spec_fn = TorchMelSpectrogramInjector({'n_mel_channels': 256, 'mel_fmax': 11000, 'filter_length': 16000, 'true_normalization': True, 'normalize': True, 'in': 'in', 'out': 'out'}, {}).cuda() cheater_encoder = MusicCheaterLatentInjector({'in': 'in', 'out': 'out'}, {}).cuda() model = TransformerDiffusionWithPointConditioning(in_channels=256, out_channels=512, model_channels=1024, contraction_dim=512, num_heads=8, num_layers=12, dropout=0, use_fp16=False, unconditioned_percentage=0).eval().cuda() diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [256]), model_mean_type='epsilon', model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', 4000), conditioning_free=True, conditioning_free_k=2) model.load_state_dict(torch.load('x:/dlas/experiments/train_music_cheater_gen_v5/models/72000_generator_ema.pth')) clip1 = load_audio(clip1, 22050)[:-(clip1_cut*22050)].cuda() clip1_mel = spec_fn({'in': clip1.unsqueeze(0)})['out'] clip1_cheater = cheater_encoder({'in': clip1_mel})['out'] clip2 = load_audio(clip2, 22050)[clip2_cut*22050:].cuda() clip2_mel = spec_fn({'in': clip2.unsqueeze(0)})['out'] clip2_cheater = cheater_encoder({'in': clip2_mel})['out'] blank_cheater_sz = (22050*mix_time//4096) sample_template = torch.cat([clip1_cheater[:,:,-25:], torch.zeros(1,256,blank_cheater_sz, device='cuda'), clip2_cheater[:,:,:25]], dim=-1) mask = torch.ones_like(sample_template) mask[:,:,25:-25] = 0 def custom_conditioning_endpoint_fetch(cond_enc, ts): clip_sz = 100 combined_cheater = torch.cat([clip1_cheater[:,:,-clip_sz:], clip2_cheater[:,:,:clip_sz]], dim=-1) enc = cond_enc(combined_cheater, ts) start_cond = enc[:,:,clip_sz-25] # About 5 seconds back into the clip. end_cond = enc[:,:,clip_sz+25] return start_cond, end_cond gen_cheater = diffuser.p_sample_loop_with_guidance(model, sample_template, mask, model_kwargs={'custom_conditioning_fetcher': custom_conditioning_endpoint_fetch}) cheater_decoder_diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [64]), model_mean_type='epsilon', model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', 4000), conditioning_free=True, conditioning_free_k=1) cheater_to_mel = get_cheater_decoder().diff.cuda() gen_mel = cheater_decoder_diffuser.ddim_sample_loop(cheater_to_mel, (1,256,gen_cheater.shape[-1]*16), progress=True, model_kwargs={'codes': gen_cheater.permute(0,2,1)}) torchvision.utils.save_image((gen_mel + 1)/2, f'{results_dir}/mel.png') from utils.music_utils import get_mel2wav_v3_model m2w = get_mel2wav_v3_model().cuda() spectral_diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [32]), model_mean_type='epsilon', model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', 4000), conditioning_free=True, conditioning_free_k=1) from trainer.injectors.audio_injectors import denormalize_mel gen_mel_denorm = denormalize_mel(gen_mel) output_shape = (1,16,gen_mel_denorm.shape[-1]*256//16) gen_wav = spectral_diffuser.ddim_sample_loop(m2w, output_shape, progress=True, model_kwargs={'codes': gen_mel_denorm}) from trainer.injectors.audio_injectors import pixel_shuffle_1d gen_wav = pixel_shuffle_1d(gen_wav, 16) torchaudio.save(f'{results_dir}/out.wav', gen_wav.squeeze(1).cpu(), 22050) if __name__ == '__main__': results_dir = '../results/audio_joiner' clip1 = 'Y:\\sources\\manual_podcasts_music\\2\\The Glitch Mob - Discography\\2014 - Love, Death Immortality\\2. Our Demons (feat. Aja Volkman).mp3' clip1_cut = 35 # Seconds clip2 = 'Y:\\sources\\manual_podcasts_music\\2\\The Glitch Mob - Discography\\2014 - Love, Death Immortality\\9. Carry The Sun.mp3' clip2_cut = 1 mix_time = 10 os.makedirs(results_dir, exist_ok=True) join_music(clip1, clip1_cut, clip2, clip2_cut, mix_time, results_dir)