import os import torch import os.path as osp import torchvision from torch.nn import MSELoss from torch.utils.data import DataLoader from tqdm import tqdm import trainer.eval.evaluator as evaluator from pytorch_fid import fid_score from data.image_pair_with_corresponding_points_dataset import ImagePairWithCorrespondingPointsDataset from models.segformer.segformer import Segformer from utils.util import opt_get # Uses two datasets: a "similar" and "dissimilar" dataset, each of which contains pairs of images and similar/dissimilar # points in those datasets. Uses the provided network to compute a latent vector for both similar and dissimilar. # Reports a score for the l2 distance of both. A properly trained network will show similar points getting closer while # dissimilar points remain constant or get further apart. class SinglePointPairContrastiveEval(evaluator.Evaluator): def __init__(self, model, opt_eval, env): super().__init__(model, opt_eval, env) self.batch_sz = opt_eval['batch_size'] self.eval_qty = opt_eval['quantity'] assert self.eval_qty % self.batch_sz == 0 self.similar_set = DataLoader(ImagePairWithCorrespondingPointsDataset(opt_eval['similar_set_args']), shuffle=False, batch_size=self.batch_sz) self.dissimilar_set = DataLoader(ImagePairWithCorrespondingPointsDataset(opt_eval['dissimilar_set_args']), shuffle=False, batch_size=self.batch_sz) # Hack to make this work with the BYOL generator. TODO: fix self.model = self.model.online_encoder.net def get_l2_score(self, dl, dev): distances = [] l2 = MSELoss() for i, data in tqdm(enumerate(dl)): latent1 = self.model(img=data['img1'].to(dev), pos=torch.stack(data['coords1'], dim=1).to(dev)) latent2 = self.model(img=data['img2'].to(dev), pos=torch.stack(data['coords2'], dim=1).to(dev)) distances.append(l2(latent1, latent2)) if i * self.batch_sz >= self.eval_qty: break return torch.stack(distances).mean() def perform_eval(self): self.model.eval() with torch.no_grad(): dev = next(self.model.parameters()).device print("Computing contrastive eval on similar set") similars = self.get_l2_score(self.similar_set, dev) print("Computing contrastive eval on dissimilar set") dissimilars = self.get_l2_score(self.dissimilar_set, dev) diff = dissimilars.item() - similars.item() print(f"Eval done. val_similar_lq: {similars.item()}; val_dissimilar_l2: {dissimilars.item()}; val_diff: {diff}") self.model.train() return {"val_similar_l2": similars.item(), "val_dissimilar_l2": dissimilars.item(), "val_diff": diff} if __name__ == '__main__': model = Segformer(1024, 4).cuda() eval = SinglePointPairContrastiveEval(model, { 'batch_size': 8, 'quantity': 32, 'similar_set_args': { 'path': 'E:\\4k6k\\datasets\\ns_images\\segformer_validation\\similar', 'size': 256 }, 'dissimilar_set_args': { 'path': 'E:\\4k6k\\datasets\\ns_images\\segformer_validation\\dissimilar', 'size': 256 }, }, {}) eval.perform_eval()