import functools import torch import torch.nn as nn import torch.nn.functional as F from transformers import GPT2Model, GPT2Config, GPT2PreTrainedModel from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions from transformers.utils.model_parallel_utils import get_device_map, assert_device_map from trainer.networks import register_model from utils.util import opt_get class ResBlock(nn.Module): """ Basic residual convolutional block that uses GroupNorm. """ def __init__(self, chan): super().__init__() self.net = nn.Sequential( nn.Conv1d(chan, chan, kernel_size=3, padding=1), nn.GroupNorm(chan//8, chan), nn.ReLU(), nn.Conv1d(chan, chan, kernel_size=3, padding=1), nn.GroupNorm(chan//8, chan) ) def forward(self, x): return F.relu(self.net(x) + x) class LeanMelEncoder(nn.Module): """ Encodes a BxCxS MEL tensor into a latent space suitable for use with a transformer. """ def __init__(self, channels, mel_channels=80, resblocks_per_reduction=1): super().__init__() self.channels = channels self.encoder = nn.Sequential(nn.Conv1d(mel_channels, channels//2, kernel_size=5, stride=2, padding=1), nn.GroupNorm(channels//16, channels//2), nn.ReLU(), nn.Sequential(*[ResBlock(channels//2) for _ in range(resblocks_per_reduction)]), nn.Conv1d(channels//2, channels, kernel_size=3, stride=2, padding=1), nn.GroupNorm(channels//8, channels), nn.ReLU(), nn.Sequential(*[ResBlock(channels) for _ in range(resblocks_per_reduction)]), nn.Conv1d(channels, channels, kernel_size=3, stride=2, padding=1), nn.GroupNorm(channels//8, channels), nn.ReLU(), nn.Sequential(*[ResBlock(channels) for _ in range(resblocks_per_reduction)]), ) self.reduction = 8 def forward(self, x): for e in self.encoder: x = e(x) return x def null_position_embeddings(range, dim): """ Helper method which simply returns a range-shaped tensor filled with zeros. Useful for emulating a no-effect embedding. """ return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device) class GPT2InferenceModel(GPT2PreTrainedModel): def __init__(self, config, gpt, text_pos_emb, norm, linear): super().__init__(config) self.transformer = gpt self.text_pos_embedding = text_pos_emb self.lm_head = nn.Sequential(norm, linear) # Model parallel self.model_parallel = False self.device_map = None self.cached_mel_emb = None def parallelize(self, device_map=None): self.device_map = ( get_device_map(len(self.transformer.h), range(torch.cuda.device_count())) if device_map is None else device_map ) assert_device_map(self.device_map, len(self.transformer.h)) self.transformer.parallelize(self.device_map) self.lm_head = self.lm_head.to(self.transformer.first_device) self.model_parallel = True def deparallelize(self): self.transformer.deparallelize() self.transformer = self.transformer.to("cpu") self.lm_head = self.lm_head.to("cpu") self.model_parallel = False torch.cuda.empty_cache() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def store_mel_emb(self, mel_emb): self.cached_mel_emb = mel_emb def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs): token_type_ids = kwargs.get("token_type_ids", None) # only last token for inputs_ids if past is defined in kwargs if past: input_ids = input_ids[:, -1].unsqueeze(-1) if token_type_ids is not None: token_type_ids = token_type_ids[:, -1].unsqueeze(-1) attention_mask = kwargs.get("attention_mask", None) position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past: position_ids = position_ids[:, -1].unsqueeze(-1) else: position_ids = None return { "input_ids": input_ids, "past_key_values": past, "use_cache": kwargs.get("use_cache"), "position_ids": position_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } def forward( self, input_ids=None, past_key_values=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): assert self.cached_mel_emb is not None assert inputs_embeds is None # Not supported by this inference model. assert labels is None # Training not supported by this inference model. return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Create embedding mel_len = self.cached_mel_emb.shape[1] if input_ids.shape[1] != 1: text_inputs = input_ids[:, mel_len:] text_emb = self.transformer.get_input_embeddings()(text_inputs) text_emb = text_emb + self.text_pos_embedding(torch.arange(text_emb.shape[1], device=text_emb.device)) if self.cached_mel_emb.shape[0] != text_emb.shape[0]: mel_emb = self.cached_mel_emb.repeat_interleave(text_emb.shape[0]//self.cached_mel_emb.shape[0], 0) else: mel_emb = self.cached_mel_emb emb = torch.cat([mel_emb, text_emb], dim=1) else: emb = self.transformer.get_input_embeddings()(input_ids) + \ self.text_pos_embedding(torch.tensor(attention_mask.shape[1]-mel_len, device=attention_mask.device)).unsqueeze(0).unsqueeze(0) transformer_outputs = self.transformer( inputs_embeds=emb, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] # Set device for model parallelism if self.model_parallel: torch.cuda.set_device(self.transformer.first_device) hidden_states = hidden_states.to(self.lm_head.weight.device) lm_logits = self.lm_head(hidden_states) if not return_dict: return (lm_logits,) + transformer_outputs[1:] return CausalLMOutputWithCrossAttentions( loss=None, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, cross_attentions=transformer_outputs.cross_attentions, ) @staticmethod def _reorder_cache(past, beam_idx): """ This function is used to re-order the :obj:`past_key_values` cache if :meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step. """ return tuple( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) for layer_past in past ) class GptAsrHf2(nn.Module): """ Core module that encapsulates a set of embeddings, a MEL encoder, a GPT-style transformer and the head needed to make its output useful. """ def __init__(self, layers=8, model_dim=512, heads=8, max_symbols_per_phrase=800, max_mel_frames=3000, checkpointing=True, number_text_tokens=512, start_token=511, stop_token=0, mel_compression=256): super().__init__() self.number_text_tokens = number_text_tokens self.start_token = start_token self.stop_token = stop_token self.max_symbols_per_phrase = max_symbols_per_phrase self.model_dim = model_dim self.mel_encoder = LeanMelEncoder(model_dim) self.max_mel_frames = max_mel_frames // self.mel_encoder.reduction self.mel_compression = mel_compression seq_length = 2+self.max_symbols_per_phrase+self.max_mel_frames self.gpt_config = GPT2Config(vocab_size=self.number_text_tokens, n_positions=seq_length, n_ctx=seq_length, n_embd=model_dim, n_layer=layers, n_head=heads, gradient_checkpointing=checkpointing, use_cache=not checkpointing) self.gpt = GPT2Model(self.gpt_config) # Override the built in positional embeddings del self.gpt.wpe self.gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim) # This model uses its own positional embeddings, which helps discriminate between text and audio MELs. self.text_pos_embedding = nn.Embedding(self.max_symbols_per_phrase + 1, model_dim) self.mel_pos_embedding = nn.Embedding(self.max_mel_frames, model_dim) self.text_solo_embedding = nn.Parameter(torch.randn(1,1,model_dim) * self.gpt.config.initializer_range, requires_grad=True) # Head layers self.final_norm = nn.LayerNorm(model_dim) self.text_head = nn.Linear(model_dim, self.number_text_tokens) # Initialize the embeddings per the GPT-2 scheme for module in [self.text_pos_embedding, self.mel_pos_embedding]: module.weight.data.normal_(mean=0.0, std=self.gpt.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def build_aligned_inputs_and_targets(self, input, start_token, stop_token): """ Helper function for producing inputs and outputs for the GPT model. """ inp = F.pad(input, (1,0), value=start_token) tar = F.pad(input, (0,1), value=stop_token) return inp, tar def get_logits(self, mel_inputs, text_emb, get_attns=False): """ Helper function for producing text logits. """ if mel_inputs is None: emb = text_emb mel_len = 0 else: mel_emb = self.mel_encoder(mel_inputs) assert mel_emb.shape[-1] <= self.max_mel_frames, f'{mel_emb.shape[-1]} > {self.max_mel_frames}' mel_emb = mel_emb.permute(0,2,1).contiguous() mel_emb = mel_emb + self.mel_pos_embedding(torch.arange(mel_emb.shape[1], device=mel_emb.device)) emb = torch.cat([mel_emb, text_emb], dim=1) mel_len = mel_emb.shape[1] gpt_out = self.gpt(inputs_embeds=emb, return_dict=True, output_attentions=get_attns) if get_attns: return gpt_out.attentions enc = gpt_out.last_hidden_state text_logits = self.final_norm(enc[:, mel_len:]) text_logits = self.text_head(text_logits) text_logits = text_logits.permute(0,2,1) return text_logits def forward(self, mel_inputs, wav_lengths, text_inputs, text_lengths, return_attentions=False): """ "Normal" forward pass which produces a text loss when given a MEL-encoded audio clip and transcribed text targets. """ assert text_inputs.shape[1] <= self.max_symbols_per_phrase, str(text_inputs.shape[1]) assert text_inputs.max() <= self.number_text_tokens, str(text_inputs.max()) # Trim off excessive inputs to speed training. This might seem odd, but consider that this model is fed microbatches # which are padded at the macro-batch level. max_text_len = text_lengths.max() text_inputs = text_inputs[:, :max_text_len] max_mel_len = wav_lengths.max() // self.mel_compression mel_inputs = mel_inputs[:, :, :max_mel_len] text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_token, self.stop_token) text_emb = self.gpt.get_input_embeddings()(text_inputs) + \ self.text_pos_embedding(torch.arange(text_inputs.shape[1], device=text_inputs.device)) text_logits = self.get_logits(mel_inputs, text_emb, get_attns=return_attentions) if return_attentions: return text_logits # These weren't really the logits. loss_text = F.cross_entropy(text_logits, text_targets.long()) return loss_text.mean(), text_logits def text_only(self, text_inputs, text_lengths): """ Used to train on only text inputs. """ assert text_inputs.shape[1] <= self.max_symbols_per_phrase, str(text_inputs.shape[1]) assert text_inputs.max() <= self.number_text_tokens, str(text_inputs.max()) # Trim off excessive inputs to speed training. This might seem odd, but consider that this model is fed microbatches # which are padded at the macro-batch level. max_text_len = text_lengths.max() text_inputs = text_inputs[:, :max_text_len] text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_token, self.stop_token) text_emb = self.gpt.get_input_embeddings()(text_inputs) + \ self.text_pos_embedding(torch.arange(text_inputs.shape[1], device=text_inputs.device)) + \ self.text_solo_embedding text_logits = self.get_logits(None, text_emb) loss_text = F.cross_entropy(text_logits, text_targets.long()) return loss_text.mean(), text_logits def inference(self, mel_inputs, do_sample=False, temperature=1.0, num_beams=8): """ Performs inference by transcribing mel_inputs into text. Returns the text tokens. """ if not hasattr(self, 'inference_model'): self.inference_model = GPT2InferenceModel(self.gpt_config, self.gpt, self.text_pos_embedding, self.final_norm, self.text_head) mel_emb = self.mel_encoder(mel_inputs) assert mel_emb.shape[-1] <= self.max_mel_frames mel_emb = mel_emb.permute(0,2,1).contiguous() mel_emb = mel_emb + self.mel_pos_embedding(torch.arange(mel_emb.shape[1], device=mel_emb.device)) self.inference_model.store_mel_emb(mel_emb) # "fake_inputs" are stand-ins for the MEL frames, which will be injected with the prep_inputs function above. fake_inputs = torch.full((mel_emb.shape[0],mel_emb.shape[1]+1,), fill_value=1, dtype=torch.long, device=mel_inputs.device) fake_inputs[:,-1] = self.start_token gen = self.inference_model.generate(fake_inputs, do_sample=do_sample, bos_token_id=self.start_token, pad_token_id=0, eos_token_id=0, max_length=self.max_symbols_per_phrase+mel_emb.shape[1], temperature=temperature, num_beams=num_beams, use_cache=True) return gen[:, mel_emb.shape[1]+1:] @register_model def register_gpt_asr_hf2(opt_net, opt): return GptAsrHf2(**opt_get(opt_net, ['kwargs'], {})) # Quick script that loads a model and halves the number of layers, then saves that model. def distill(): gpt = GptAsrHf2(max_symbols_per_phrase=250, max_mel_frames=1400, layers=12, model_dim=512, heads=8) gpt.load_state_dict(torch.load('X:\\dlas\\experiments\\train_gpt_asr_mass_hf\\models\\48000_gpt_ema.pth')) rc = 0 i = 0 while i < len(gpt.gpt.h): if rc % 2 != 0: del gpt.gpt.h[i] else: i += 1 rc += 1 torch.save(gpt.state_dict(), 'X:\\dlas\\experiments\\train_gpt_asr_mass_hf\\models\\48000_gpt_distilled.pth') if __name__ == '__main__': #distill() gpt = GptAsrHf2(max_symbols_per_phrase=250, max_mel_frames=1400, layers=16, model_dim=512, heads=8) l = gpt(torch.randn(2,80,640), torch.tensor([100*256,20*256]), torch.randint(high=100, size=(2,80)), torch.tensor([15,60])) gpt.text_only(torch.randint(high=100, size=(2,120)), torch.tensor([30,33])) #start = time() #gpt.inference(torch.randn(1,80,350), num_beams=1) #print(f"Elapsed: {time()-start}")