"""A multi-thread tool to crop large images to sub-images for faster IO.""" import os import os.path as osp import numpy as np import cv2 from PIL import Image import data.util as data_util # noqa: E402 import torch.utils.data as data from tqdm import tqdm import torch def main(): split_img = False opt = {} opt['n_thread'] = 7 opt['compression_level'] = 90 # JPEG compression quality rating. # CV_IMWRITE_PNG_COMPRESSION from 0 to 9. A higher value means a smaller size and longer # compression time. If read raw images during training, use 0 for faster IO speed. opt['dest'] = 'file' opt['input_folder'] = 'F:\\4k6k\\datasets\\images\youtube\\images_cook' opt['save_folder'] = 'F:\\4k6k\\datasets\\images\\youtube_massive_cook' opt['crop_sz'] = [512, 1024, 2048] # the size of each sub-image opt['step'] = [256, 512, 1024] # step of the sliding crop window opt['exclusions'] = [[],[],[]] # image names matching these terms wont be included in the processing. opt['thres_sz'] = 128 # size threshold opt['resize_final_img'] = [.5, .25, .125] opt['only_resize'] = False opt['vertical_split'] = False opt['input_image_max_size_before_being_halved'] = 5500 # As described, images larger than this dimensional size will be halved before anything else is done. # This helps prevent images from cameras with "false-megapixels" from polluting the dataset. # False-megapixel=lots of noise at ultra-high res. save_folder = opt['save_folder'] if not osp.exists(save_folder): os.makedirs(save_folder) print('mkdir [{:s}] ...'.format(save_folder)) if opt['dest'] == 'lmdb': writer = LmdbWriter(save_folder) else: writer = FileWriter(save_folder) extract_single(opt, writer) class LmdbWriter: def __init__(self, lmdb_path, max_mem_size=30*1024*1024*1024, write_freq=5000): self.db = lmdb.open(lmdb_path, subdir=True, map_size=max_mem_size, readonly=False, meminit=False, map_async=True) self.txn = self.db.begin(write=True) self.ref_id = 0 self.tile_ids = {} self.writes = 0 self.write_freq = write_freq self.keys = [] # Writes the given reference image to the db and returns its ID. def write_reference_image(self, ref_img, _): id = self.ref_id self.ref_id += 1 self.write_image(id, ref_img[0], ref_img[1]) return id # Writes a tile image to the db given a reference image and returns its ID. def write_tile_image(self, ref_id, tile_image): next_tile_id = 0 if ref_id not in self.tile_ids.keys() else self.tile_ids[ref_id] self.tile_ids[ref_id] = next_tile_id+1 full_id = "%i_%i" % (ref_id, next_tile_id) self.write_image(full_id, tile_image[0], tile_image[1]) self.keys.append(full_id) return full_id # Writes an image directly to the db with the given reference image and center point. def write_image(self, id, img, center_point): self.txn.put(u'{}'.format(id).encode('ascii'), pyarrow.serialize(img).to_buffer(), pyarrow.serialize(center_point).to_buffer()) self.writes += 1 if self.writes % self.write_freq == 0: self.txn.commit() self.txn = self.db.begin(write=True) def close(self): self.txn.commit() with self.db.begin(write=True) as txn: txn.put(b'__keys__', pyarrow.serialize(self.keys).to_buffer()) txn.put(b'__len__', pyarrow.serialize(len(self.keys)).to_buffer()) self.db.sync() self.db.close() class FileWriter: def __init__(self, folder): self.folder = folder self.next_unique_id = 0 self.ref_center_points = {} # Maps ref_img basename to a dict of image IDs:center points self.ref_ids_to_names = {} def get_next_unique_id(self): id = self.next_unique_id self.next_unique_id += 1 return id def save_image(self, ref_path, img_name, img): save_path = osp.join(self.folder, ref_path) os.makedirs(save_path, exist_ok=True) f = open(osp.join(save_path, img_name), "wb") f.write(img) f.close() # Writes the given reference image to the db and returns its ID. def write_reference_image(self, ref_img, path): ref_img, _, _ = ref_img # Encoded with a center point, which is irrelevant for the reference image. img_name = osp.basename(path).replace(".jpg", "").replace(".png", "") self.ref_center_points[img_name] = {} self.save_image(img_name, "ref.jpg", ref_img) id = self.get_next_unique_id() self.ref_ids_to_names[id] = img_name return id # Writes a tile image to the db given a reference image and returns its ID. def write_tile_image(self, ref_id, tile_image): id = self.get_next_unique_id() ref_name = self.ref_ids_to_names[ref_id] img, center, tile_sz = tile_image self.ref_center_points[ref_name][id] = center, tile_sz self.save_image(ref_name, "%08i.jpg" % (id,), img) return id def flush(self): for ref_name, cps in self.ref_center_points.items(): torch.save(cps, osp.join(self.folder, ref_name, "centers.pt")) self.ref_center_points = {} def close(self): self.flush() class TiledDataset(data.Dataset): def __init__(self, opt): self.split_mode = opt['vertical_split'] self.opt = opt input_folder = opt['input_folder'] self.images = data_util._get_paths_from_images(input_folder) def __getitem__(self, index): if self.split_mode: return (self.get(index, True, True), self.get(index, True, False)) else: # Wrap in a tuple to align with split mode. return (self.get(index, False, False), None) def get_for_scale(self, img, crop_sz, step, resize_factor, ref_resize_factor): thres_sz = self.opt['thres_sz'] h, w, c = img.shape if crop_sz > h: return [] h_space = np.arange(0, h - crop_sz + 1, step) if h - (h_space[-1] + crop_sz) > thres_sz: h_space = np.append(h_space, h - crop_sz) w_space = np.arange(0, w - crop_sz + 1, step) if w - (w_space[-1] + crop_sz) > thres_sz: w_space = np.append(w_space, w - crop_sz) index = 0 tile_dim = int(crop_sz * resize_factor) dsize = (tile_dim, tile_dim) results = [] for x in h_space: for y in w_space: index += 1 crop_img = img[x:x + crop_sz, y:y + crop_sz, :] # Center point needs to be resized by ref_resize_factor - since it is relative to the reference image. center_point = (int((x + crop_sz // 2) // ref_resize_factor), int((y + crop_sz // 2) // ref_resize_factor)) crop_img = np.ascontiguousarray(crop_img) if 'resize_final_img' in self.opt.keys(): crop_img = cv2.resize(crop_img, dsize, interpolation=cv2.INTER_AREA) success, buffer = cv2.imencode(".jpg", crop_img, [cv2.IMWRITE_JPEG_QUALITY, self.opt['compression_level']]) assert success results.append((buffer, center_point, int(crop_sz // ref_resize_factor))) return results def get(self, index, split_mode, left_img): path = self.images[index] img = cv2.imread(path, cv2.IMREAD_UNCHANGED) if img is None or len(img.shape) == 2: return None h, w, c = img.shape if max(h,w) > self.opt['input_image_max_size_before_being_halved']: h = h // 2 w = w // 2 img = cv2.resize(img, (w, h), interpolation=cv2.INTER_AREA) #print("Resizing to ", img.shape) # Uncomment to filter any image that doesnt meet a threshold size. if min(h,w) < 512: return None # Greyscale not supported. if len(img.shape) == 2: return None # Handle splitting the image if needed. left = 0 right = w if split_mode: if left_img: left = 0 right = w//2 else: left = w//2 right = w img = img[:, left:right] # We must convert the image into a square. dim = min(h, w) if split_mode: # Crop the image towards the center, which makes more sense in split mode. if left_img: img = img[-dim:, -dim:, :] else: img = img[:dim, :dim, :] else: # Crop the image so that only the center is left, since this is often the most salient part of the image. img = img[(h - dim) // 2:dim + (h - dim) // 2, (w - dim) // 2:dim + (w - dim) // 2, :] h, w, c = img.shape tile_dim = int(self.opt['crop_sz'][0] * self.opt['resize_final_img'][0]) dsize = (tile_dim, tile_dim) ref_resize_factor = h / tile_dim # Reference image should always be first entry in results. ref_img = cv2.resize(img, dsize, interpolation=cv2.INTER_AREA) success, ref_buffer = cv2.imencode(".jpg", ref_img, [cv2.IMWRITE_JPEG_QUALITY, self.opt['compression_level']]) assert success results = [(ref_buffer, (-1,-1), (-1,-1))] for crop_sz, exclusions, resize_factor, step in zip(self.opt['crop_sz'], self.opt['exclusions'], self.opt['resize_final_img'], self.opt['step']): excluded = False for exc in exclusions: if exc in path: excluded = True break; if excluded: continue results.extend(self.get_for_scale(img, crop_sz, step, resize_factor, ref_resize_factor)) return results, path def __len__(self): return len(self.images) def identity(x): return x def extract_single(opt, writer): dataset = TiledDataset(opt) dataloader = data.DataLoader(dataset, num_workers=opt['n_thread'], collate_fn=identity) tq = tqdm(dataloader) for spl_imgs in tq: if spl_imgs is None: continue spl_imgs = spl_imgs[0] for imgs, lbl in zip(list(spl_imgs), ['left', 'right']): if imgs is None: continue imgs, path = imgs if imgs is None or len(imgs) <= 1: continue path = path + "_" + lbl ref_id = writer.write_reference_image(imgs[0], path) for tile in imgs[1:]: writer.write_tile_image(ref_id, tile) writer.flush() writer.close() if __name__ == '__main__': main()