import torch from models.audio.mel2vec import ContrastiveTrainingWrapper from trainer.injectors.audio_injectors import TorchMelSpectrogramInjector from utils.util import load_audio def collapse_codegroups(codes): codes = codes.clone() groups = codes.shape[-1] for k in range(groups): codes[:,:,k] = codes[:,:,k] * groups ** k codes = codes.sum(-1) return codes def recover_codegroups(codes, groups): codes = codes.clone() output = torch.LongTensor(codes.shape[0], codes.shape[1], groups, device=codes.device) for k in range(groups): output[:,:,k] = codes % groups codes = codes // groups return output if __name__ == '__main__': model = ContrastiveTrainingWrapper(mel_input_channels=256, inner_dim=1024, layers=24, dropout=0, mask_time_prob=0, mask_time_length=6, num_negatives=100, codebook_size=8, codebook_groups=8, disable_custom_linear_init=True) model.load_state_dict(torch.load("X:\\dlas\\experiments\\train_music_mel2vec\\models\\29000_generator_ema.pth")) model.eval() wav = load_audio("Y:/separated/bt-music-1/100 Hits - Running Songs 2014 CD 2/100 Hits - Running Songs 2014 Cd2 - 02 - 7Th Heaven - Ain't Nothin' Goin' On But The Rent/00001/no_vocals.wav", 22050) mel = TorchMelSpectrogramInjector({'n_mel_channels': 256, 'mel_fmax': 22000, 'normalize': True, 'in': 'in', 'out': 'out'}, {})({'in': wav.unsqueeze(0)})['out'] codes = model.get_codes(mel) collapsed = collapse_codegroups(codes) recovered = recover_codegroups(collapsed, 8) print(codes)