import torch.nn as nn import torch.nn.functional as F from models.archs.RRDBNet_arch import RRDB from models.archs.arch_util import make_layer, default_init_weights, ConvGnSilu, ConvGnLelu, PixelUnshuffle from utils.util import checkpoint, sequential_checkpoint class MultiLevelRRDB(nn.Module): def __init__(self, nf, gc, levels): super().__init__() self.levels = levels self.level_rrdbs = nn.ModuleList([RRDB(nf, growth_channels=gc) for i in range(levels)]) # Trunks should be fed in in order HR->LR def forward(self, trunk): for i in reversed(range(self.levels)): lvl_scale = (2**i) lvl_res = self.level_rrdbs[i](F.interpolate(trunk, scale_factor=1/lvl_scale, mode="area"), return_residual=True) trunk = trunk + F.interpolate(lvl_res, scale_factor=lvl_scale, mode="nearest") return trunk class MultiResRRDBNet(nn.Module): def __init__(self, in_channels, out_channels, mid_channels=64, l1_blocks=3, l2_blocks=4, l3_blocks=6, growth_channels=32, scale=4, ): super().__init__() self.scale = scale self.in_channels = in_channels self.conv_first = nn.Conv2d(in_channels, mid_channels, 7, stride=1, padding=3) self.l3_blocks = nn.ModuleList([MultiLevelRRDB(mid_channels, growth_channels, 3) for _ in range(l1_blocks)]) self.l2_blocks = nn.ModuleList([MultiLevelRRDB(mid_channels, growth_channels, 2) for _ in range(l2_blocks)]) self.l1_blocks = nn.ModuleList([MultiLevelRRDB(mid_channels, growth_channels, 1) for _ in range(l3_blocks)]) self.block_levels = [self.l3_blocks, self.l2_blocks, self.l1_blocks] self.conv_body = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1) # upsample self.conv_up1 = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1) self.conv_up2 = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1) self.conv_hr = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1) self.conv_last = nn.Conv2d(mid_channels, out_channels, 3, 1, 1) self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) for m in [ self.conv_first, self.conv_first, self.conv_body, self.conv_up1, self.conv_up2, self.conv_hr, self.conv_last ]: if m is not None: default_init_weights(m, 0.1) def forward(self, x): trunk = self.conv_first(x) for block_set in self.block_levels: for block in block_set: trunk = checkpoint(block, trunk) body_feat = self.conv_body(trunk) feat = trunk + body_feat # upsample out = self.lrelu( self.conv_up1(F.interpolate(feat, scale_factor=2, mode='nearest'))) if self.scale == 4: out = self.lrelu( self.conv_up2(F.interpolate(out, scale_factor=2, mode='nearest'))) else: out = self.lrelu(self.conv_up2(out)) out = self.conv_last(self.lrelu(self.conv_hr(out))) return out def visual_dbg(self, step, path): pass class SteppedResRRDBNet(nn.Module): def __init__(self, in_channels, out_channels, mid_channels=64, l1_blocks=3, l2_blocks=3, growth_channels=32, scale=4, ): super().__init__() self.scale = scale self.in_channels = in_channels self.conv_first = nn.Conv2d(in_channels, mid_channels, 7, stride=2, padding=3) self.conv_second = nn.Conv2d(mid_channels, mid_channels*2, 3, stride=2, padding=1) self.l1_blocks = nn.Sequential(*[RRDB(mid_channels*2, growth_channels*2) for _ in range(l1_blocks)]) self.l1_upsample_conv = nn.Conv2d(mid_channels*2, mid_channels, 3, stride=1, padding=1) self.l2_blocks = nn.Sequential(*[RRDB(mid_channels, growth_channels, 2) for _ in range(l2_blocks)]) self.conv_body = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1) # upsample self.conv_up1 = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1) self.conv_up2 = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1) self.conv_hr = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1) self.conv_last = nn.Conv2d(mid_channels, out_channels, 3, 1, 1) self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) for m in [ self.conv_first, self.conv_second, self.l1_upsample_conv, self.conv_body, self.conv_up1, self.conv_up2, self.conv_hr, self.conv_last ]: if m is not None: default_init_weights(m, 0.1) def forward(self, x): trunk = self.conv_first(x) trunk = self.conv_second(trunk) trunk = sequential_checkpoint(self.l1_blocks, len(self.l2_blocks), trunk) trunk = F.interpolate(trunk, scale_factor=2, mode="nearest") trunk = self.l1_upsample_conv(trunk) trunk = sequential_checkpoint(self.l2_blocks, len(self.l2_blocks), trunk) body_feat = self.conv_body(trunk) feat = trunk + body_feat # upsample out = self.lrelu( self.conv_up1(F.interpolate(feat, scale_factor=2, mode='nearest'))) if self.scale == 4: out = self.lrelu( self.conv_up2(F.interpolate(out, scale_factor=2, mode='nearest'))) else: out = self.lrelu(self.conv_up2(out)) out = self.conv_last(self.lrelu(self.conv_hr(out))) return out def visual_dbg(self, step, path): pass class PixelShufflingSteppedResRRDBNet(nn.Module): def __init__(self, in_channels, out_channels, mid_channels=64, l1_blocks=3, l2_blocks=3, growth_channels=32, scale=2, ): super().__init__() self.scale = scale * 2 # This RRDB operates at half-scale resolution. self.in_channels = in_channels self.pix_unshuffle = PixelUnshuffle(4) self.conv_first = nn.Conv2d(4*4*in_channels, mid_channels*2, 3, stride=1, padding=1) self.l1_blocks = nn.Sequential(*[RRDB(mid_channels*2, growth_channels*2) for _ in range(l1_blocks)]) self.l1_upsample_conv = nn.Conv2d(mid_channels*2, mid_channels, 3, stride=1, padding=1) self.l2_blocks = nn.Sequential(*[RRDB(mid_channels, growth_channels, 2) for _ in range(l2_blocks)]) self.conv_body = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1) # upsample self.conv_up1 = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1) self.conv_up2 = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1) self.conv_hr = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1) self.conv_last = nn.Conv2d(mid_channels, out_channels, 3, 1, 1) self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) for m in [ self.conv_first, self.l1_upsample_conv, self.conv_body, self.conv_up1, self.conv_up2, self.conv_hr, self.conv_last ]: if m is not None: default_init_weights(m, 0.1) def forward(self, x): trunk = self.conv_first(self.pix_unshuffle(x)) trunk = sequential_checkpoint(self.l1_blocks, len(self.l1_blocks), trunk) trunk = F.interpolate(trunk, scale_factor=2, mode="nearest") trunk = self.l1_upsample_conv(trunk) trunk = sequential_checkpoint(self.l2_blocks, len(self.l2_blocks), trunk) body_feat = self.conv_body(trunk) feat = trunk + body_feat # upsample out = self.lrelu( self.conv_up1(F.interpolate(feat, scale_factor=2, mode='nearest'))) if self.scale == 4: out = self.lrelu( self.conv_up2(F.interpolate(out, scale_factor=2, mode='nearest'))) else: out = self.lrelu(self.conv_up2(out)) out = self.conv_last(self.lrelu(self.conv_hr(out))) return out def visual_dbg(self, step, path): pass