import json import torch import torch.nn as nn import torch.nn.functional as F from x_transformers import Encoder, XTransformer, TransformerWrapper from models.gpt_voice.unet_diffusion_tts6 import CheckpointedLayer from models.gpt_voice.unified_voice2 import ConditioningEncoder from models.tacotron2.text.cleaners import english_cleaners from trainer.networks import register_model from utils.util import opt_get def clustered_mask(probability, shape, dev, lateral_expansion_radius_max=3): """ Produces a masking vector of the specified shape where each element has probability to be zero. lateral_expansion_radius_max neighbors of any element that is zero also have a 50% chance to be zero. Effectively, this produces clusters of masks tending to be lateral_expansion_radius_max wide. Note: This means the algorithm has a far higher output probability for zeros then . """ mask = torch.rand(shape, device=dev) mask = (mask < probability).float() kernel = torch.tensor([.5 for _ in range(lateral_expansion_radius_max)] + [1] + [.5 for _ in range(lateral_expansion_radius_max)], device=dev) mask = F.conv1d(mask.unsqueeze(1), kernel.view(1,1,2*lateral_expansion_radius_max+1), padding=lateral_expansion_radius_max).squeeze(1) return torch.bernoulli(torch.clamp(mask, 0, 1)) == 0 # ==0 logically inverts the mask. class CheckpointedTransformerWrapper(nn.Module): """ Wraps a ContinuousTransformerWrapper and applies CheckpointedLayer to each layer and permutes from channels-mid to channels-last that XTransformer expects. """ def __init__(self, **xtransformer_kwargs): super().__init__() self.transformer = TransformerWrapper(**xtransformer_kwargs) for i in range(len(self.transformer.transformer.attn_layers.layers)): n, b, r = self.transformer.transformer.attn_layers.layers[i] self.transformer.transformer.attn_layers.layers[i] = nn.ModuleList([n, CheckpointedLayer(b), r]) def forward(self, *args, **kwargs): return self.transformer(*args, **kwargs) class CtcCodeGenerator(nn.Module): def __init__(self, model_dim=512, layers=10, num_heads=8, dropout=.1, ctc_codes=36, max_pad=121, max_repeat=30, mask_probability=.1): super().__init__() self.max_pad = max_pad self.max_repeat = max_repeat self.mask_probability = mask_probability self.conditioning_encoder = ConditioningEncoder(80, model_dim, num_attn_heads=num_heads, mean=True) self.initial_embedding = nn.Embedding(ctc_codes, model_dim) self.combiner = nn.Linear(model_dim*2, model_dim) self.transformer = TransformerWrapper( num_tokens=max_pad*max_repeat+1, max_seq_len=-1, # Unneeded for rotary embeddings. attn_layers=Encoder( dim=model_dim, depth=layers, heads=num_heads, ff_dropout=dropout, attn_dropout=dropout, use_rmsnorm=True, ff_glu=True, rotary_pos_emb=True ) ) self.transformer.token_emb = nn.Identity() # This class handles the initial embeddings. self.transformer.to_logits = nn.Identity() self.ctc_head = nn.Linear(model_dim, max_pad*max_repeat+1) self.inp_head = nn.Linear(model_dim, ctc_codes) def forward(self, conditioning_input, codes, separators, repeats, unpadded_lengths): max_len = unpadded_lengths.max() codes = codes[:, :max_len] loss_mask = torch.ones_like(codes) for i, l in enumerate(unpadded_lengths): loss_mask[i, l:] = 0 if self.training: codes = clustered_mask(self.mask_probability, codes.shape, codes.device) * codes if separators.max() > self.max_pad: print(f"Got unexpectedly long separators. Max: {separators.max()}, {separators}") separators = torch.clip(separators, 0, self.max_pad) separators = separators[:, :max_len] if repeats.max() > self.max_repeat: print(f"Got unexpectedly long repeats. Max: {repeats.max()}, {repeats}") repeats = torch.clip(repeats, 1, self.max_repeat) repeats = repeats[:, :max_len] repeats = repeats - 1 # min(repeats) is 1; make it 0 to avoid wasting a prediction slot. labels = separators + repeats * self.max_pad # Perform conditioning encoder in FP32, with the transformer in FP16 cond = self.conditioning_encoder(conditioning_input).unsqueeze(1).repeat(1,codes.shape[1],1) h = torch.cat([cond, self.initial_embedding(codes)], dim=-1) h = self.combiner(h) with torch.autocast(codes.device.type): logits = self.transformer(h) ctc_pred = self.ctc_head(logits) code_pred = self.inp_head(logits) ctcloss = F.cross_entropy(ctc_pred.float().permute(0,2,1), labels, reduction='none') ctcloss = torch.mean(ctcloss * loss_mask) codeloss = F.cross_entropy(code_pred.float().permute(0,2,1), codes, reduction='none') codeloss = torch.mean(codeloss * loss_mask) return ctcloss, codeloss def generate(self, speech_conditioning_input, texts): codes = [] max_seq = 50 for text in texts: # First, generate CTC codes from the given texts. vocab = json.loads('{" ": 4, "E": 5, "T": 6, "A": 7, "O": 8, "N": 9, "I": 10, "H": 11, "S": 12, "R": 13, "D": 14, "L": 15, "U": 16, "M": 17, "W": 18, "C": 19, "F": 20, "G": 21, "Y": 22, "P": 23, "B": 24, "V": 25, "K": 26, "\'": 27, "X": 28, "J": 29, "Q": 30, "Z": 31}') text = english_cleaners(text) text = text.strip().upper() cd = [] for c in text: if c not in vocab.keys(): continue cd.append(vocab[c]) codes.append(torch.tensor(cd, device=speech_conditioning_input.device)) max_seq = max(max_seq, codes[-1].shape[-1]) # Collate for i in range(len(codes)): if codes[i].shape[-1] < max_seq: codes[i] = F.pad(codes[i], (0, max_seq-codes[i].shape[-1])) codes = torch.stack(codes, dim=0) cond = self.conditioning_encoder(speech_conditioning_input).unsqueeze(1).repeat(1,codes.shape[1],1) h = torch.cat([cond, self.initial_embedding(codes)], dim=-1) h = self.combiner(h) with torch.autocast(codes.device.type): logits = self.transformer(h) ctc_pred = self.ctc_head(logits) generate = torch.argmax(ctc_pred, dim=-1) # De-compress the codes from the generated output pads = generate % self.max_pad repeats = (generate // self.max_pad) + 1 ctc_batch = [] max_seq = 0 for bc, bp, br in zip(codes, pads, repeats): ctc = [] for c, p, r in zip(bc, bp, br): for _ in range(p): ctc.append(0) for _ in range(r): ctc.append(c.item()) ctc_batch.append(torch.tensor(ctc, device=speech_conditioning_input.device)) max_seq = max(max_seq, ctc_batch[-1].shape[-1]) # Collate the batch for i in range(len(ctc_batch)): if ctc_batch[i].shape[-1] < max_seq: ctc_batch[i] = F.pad(ctc_batch[i], (0, max_seq-ctc_batch[i].shape[-1])) return torch.stack(ctc_batch, dim=0) @register_model def register_ctc_code_generator(opt_net, opt): return CtcCodeGenerator(**opt_get(opt_net, ['kwargs'], {})) def inf(): sd = torch.load('D:\\dlas\\experiments\\train_encoder_build_ctc_alignments_medium\\models\\24000_generator.pth', map_location='cpu') model = CtcCodeGenerator(model_dim=1024,layers=32).eval() model.load_state_dict(sd) with torch.no_grad(): from data.audio.unsupervised_audio_dataset import load_audio from scripts.audio.gen.speech_synthesis_utils import wav_to_mel ref_mel = torch.cat([wav_to_mel(load_audio("D:\\tortoise-tts\\voices\\atkins\\1.wav", 22050))[:,:,:450], wav_to_mel(load_audio("D:\\tortoise-tts\\voices\\kennard\\1.wav", 22050))[:,:,:450], wav_to_mel(load_audio("D:\\tortoise-tts\\voices\\grace\\1.wav", 22050))[:,:,:450], wav_to_mel(load_audio("D:\\tortoise-tts\\voices\\atkins\\1.wav", 22050))[:,:,:450]], dim=0) ctc = model.generate(ref_mel, (["i suppose though it's too early for them"] * 3) + ["i suppose though it's too early for them, dear"]) print("Break") if __name__ == '__main__': #inf() mask = clustered_mask(.1, (4,100), 'cpu') model = CtcCodeGenerator() inps = torch.randint(0,36, (4, 300)) pads = torch.randint(0,100, (4,300)) repeats = torch.randint(1,20, (4,300)) conds = torch.randn(4,80,600) loss1, loss2 = model(conds, inps, pads, repeats, torch.tensor([250, 300, 280, 30])) print(loss1.shape, loss2.shape)