from inspect import isfunction from math import ceil import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, repeat from rotary_embedding_torch import apply_rotary_emb # helpers def exists(val): return val is not None def uniq(arr): return{el: True for el in arr}.keys() def default(val, d): if exists(val): return val return d() if isfunction(d) else d def max_neg_value(t): return -torch.finfo(t.dtype).max def stable_softmax(t, dim = -1, alpha = 32 ** 2): t = t / alpha t = t - torch.amax(t, dim = dim, keepdim = True).detach() return (t * alpha).softmax(dim = dim) def apply_pos_emb(pos_emb, qkv): n = qkv[0].shape[-2] pos_emb = pos_emb[..., :n, :] return tuple(map(lambda t: apply_rotary_emb(pos_emb, t), qkv)) # classes class Attention(nn.Module): def __init__(self, dim, seq_len, causal = True, heads = 8, dim_head = 64, dropout = 0., stable = False): super().__init__() inner_dim = dim_head * heads self.heads = heads self.seq_len = seq_len self.scale = dim_head ** -0.5 self.stable = stable self.causal = causal self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) def forward(self, x, mask = None, rotary_pos_emb = None): b, n, _, h, device = *x.shape, self.heads, x.device softmax = torch.softmax if not self.stable else stable_softmax qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv) if exists(rotary_pos_emb): q, k, v = apply_pos_emb(rotary_pos_emb, (q, k, v)) q = q * self.scale dots = torch.einsum('b h i d, b h j d -> b h i j', q, k) mask_value = max_neg_value(dots) if exists(mask): mask = rearrange(mask, 'b j -> b () () j') dots.masked_fill_(~mask, mask_value) del mask if self.causal: i, j = dots.shape[-2:] mask = torch.ones(i, j, device = device).triu_(j - i + 1).bool() dots.masked_fill_(mask, mask_value) attn = softmax(dots, dim=-1) out = torch.einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') out = self.to_out(out) return out # sparse attention with convolutional pattern, as mentioned in the blog post. customizable kernel size and dilation class SparseConvCausalAttention(nn.Module): def __init__(self, dim, seq_len, image_size = 32, kernel_size = 5, dilation = 1, heads = 8, dim_head = 64, dropout = 0., stable = False, **kwargs): super().__init__() assert kernel_size % 2 == 1, 'kernel size must be odd' inner_dim = dim_head * heads self.seq_len = seq_len self.heads = heads self.scale = dim_head ** -0.5 self.image_size = image_size self.kernel_size = kernel_size self.dilation = dilation self.stable = stable self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) def forward(self, x, mask = None, rotary_pos_emb = None): b, n, _, h, img_size, kernel_size, dilation, seq_len, device = *x.shape, self.heads, self.image_size, self.kernel_size, self.dilation, self.seq_len, x.device softmax = torch.softmax if not self.stable else stable_softmax img_seq_len = img_size ** 2 text_len = seq_len + 1 - img_seq_len # padding padding = seq_len - n + 1 mask = default(mask, lambda: torch.ones(b, text_len, device = device).bool()) x = F.pad(x, (0, 0, 0, padding), value = 0) mask = mask[:, :text_len] # derive query / keys / values qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = h), qkv) if exists(rotary_pos_emb): q, k, v = apply_pos_emb(rotary_pos_emb, (q, k, v)) q *= self.scale ((q_text, q_img), (k_text, k_img), (v_text, v_img)) = map(lambda t: (t[:, :-img_seq_len], t[:, -img_seq_len:]), (q, k, v)) # text attention dots_text = einsum('b i d, b j d -> b i j', q_text, k_text) mask_value = max_neg_value(dots_text) i, j = dots_text.shape[-2:] text_causal_mask = torch.ones(i, j, device = device).triu_(j - i + 1).bool() dots_text.masked_fill_(text_causal_mask, mask_value) attn_text = softmax(dots_text, dim = -1) out_text = einsum('b i j, b j d -> b i d', attn_text, v_text) # image attention effective_kernel_size = (kernel_size - 1) * dilation + 1 padding = effective_kernel_size // 2 k_img, v_img = map(lambda t: rearrange(t, 'b (h w) c -> b c h w', h = img_size), (k_img, v_img)) k_img, v_img = map(lambda t: F.unfold(t, kernel_size, padding = padding, dilation = dilation), (k_img, v_img)) k_img, v_img = map(lambda t: rearrange(t, 'b (d j) i -> b i j d', j = kernel_size ** 2), (k_img, v_img)) # let image attend to all of text dots_image = einsum('b i d, b i j d -> b i j', q_img, k_img) dots_image_to_text = einsum('b i d, b j d -> b i j', q_img, k_text) # calculate causal attention for local convolution i, j = dots_image.shape[-2:] img_seq = torch.arange(img_seq_len, device = device) k_img_indices = rearrange(img_seq.float(), '(h w) -> () () h w', h = img_size) k_img_indices = F.pad(k_img_indices, (padding,) * 4, value = img_seq_len) # padding set to be max, so it is never attended to k_img_indices = F.unfold(k_img_indices, kernel_size, dilation = dilation) k_img_indices = rearrange(k_img_indices, 'b j i -> b i j') # mask image attention q_img_indices = rearrange(img_seq, 'i -> () i ()') causal_mask = q_img_indices < k_img_indices # concat text mask with image causal mask causal_mask = repeat(causal_mask, '() i j -> b i j', b = b * h) mask = repeat(mask, 'b j -> (b h) i j', i = i, h = h) mask = torch.cat((~mask, causal_mask), dim = -1) # image can attend to all of text dots = torch.cat((dots_image_to_text, dots_image), dim = -1) dots.masked_fill_(mask, mask_value) attn = softmax(dots, dim = -1) # aggregate attn_image_to_text, attn_image = attn[..., :text_len], attn[..., text_len:] out_image_to_image = einsum('b i j, b i j d -> b i d', attn_image, v_img) out_image_to_text = einsum('b i j, b j d -> b i d', attn_image_to_text, v_text) out_image = out_image_to_image + out_image_to_text # combine attended values for both text and image out = torch.cat((out_text, out_image), dim = 1) out = rearrange(out, '(b h) n d -> b n (h d)', h = h) out = self.to_out(out) return out[:, :n] # sparse axial causal attention class SparseAxialCausalAttention(nn.Module): def __init__(self, dim, seq_len, image_size = 32, axis = 0, heads = 8, dim_head = 64, dropout = 0., stable = False, **kwargs): super().__init__() assert axis in {0, 1}, 'axis must be either 0 (along height) or 1 (along width)' self.axis = axis inner_dim = dim_head * heads self.seq_len = seq_len self.heads = heads self.scale = dim_head ** -0.5 self.image_size = image_size self.stable = stable self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) def forward(self, x, mask = None, rotary_pos_emb = None): b, n, _, h, img_size, axis, seq_len, device = *x.shape, self.heads, self.image_size, self.axis, self.seq_len, x.device softmax = torch.softmax if not self.stable else stable_softmax img_seq_len = img_size ** 2 text_len = seq_len + 1 - img_seq_len # padding padding = seq_len - n + 1 mask = default(mask, lambda: torch.ones(b, text_len, device = device).bool()) x = F.pad(x, (0, 0, 0, padding), value = 0) mask = mask[:, :text_len] # derive queries / keys / values qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = h), qkv) if exists(rotary_pos_emb): q, k, v = apply_pos_emb(rotary_pos_emb, (q, k, v)) q *= self.scale ((q_text, q_img), (k_text, k_img), (v_text, v_img)) = map(lambda t: (t[:, :-img_seq_len], t[:, -img_seq_len:]), (q, k, v)) # text attention dots_text = einsum('b i d, b j d -> b i j', q_text, k_text) mask_value = max_neg_value(dots_text) i, j = dots_text.shape[-2:] text_causal_mask = torch.ones(i, j, device = device).triu_(j - i + 1).bool() dots_text.masked_fill_(text_causal_mask, mask_value) attn_text = softmax(dots_text, dim = -1) out_text = einsum('b i j, b j d -> b i d', attn_text, v_text) # image attention split_axis_einops = 'b (h w) c -> b h w c' if axis == 0 else 'b (h w) c -> b w h c' merge_axis_einops = 'b x n d -> b (x n) d' if axis == 0 else 'b x n d -> b (n x) d' # split out axis q_img, k_img, v_img = map(lambda t: rearrange(t, split_axis_einops, h = img_size), (q_img, k_img, v_img)) # similarity dots_image_to_image = einsum('b x i d, b x j d -> b x i j', q_img, k_img) dots_image_to_text = einsum('b x i d, b j d -> b x i j', q_img, k_text) dots = torch.cat((dots_image_to_text, dots_image_to_image), dim = -1) # mask so image has full attention to text, but causal along axis bh, x, i, j = dots.shape causal_mask = torch.ones(i, img_size, device = device).triu_(img_size - i + 1).bool() causal_mask = repeat(causal_mask, 'i j -> b x i j', b = bh, x = x) mask = repeat(mask, 'b j -> (b h) x i j', h = h, x = x, i = i) mask = torch.cat((~mask, causal_mask), dim = -1) dots.masked_fill_(mask, mask_value) # attention. attn = softmax(dots, dim = -1) # aggregate attn_image_to_text, attn_image_to_image = attn[..., :text_len], attn[..., text_len:] out_image_to_image = einsum('b x i j, b x j d -> b x i d', attn_image_to_image, v_img) out_image_to_text = einsum('b x i j, b j d -> b x i d', attn_image_to_text, v_text) out_image = out_image_to_image + out_image_to_text # merge back axis out_image = rearrange(out_image, merge_axis_einops, x = img_size) # combine attended values for both text and image out = torch.cat((out_text, out_image), dim = 1) out = rearrange(out, '(b h) n d -> b n (h d)', h = h) out = self.to_out(out) return out[:, :n] # microsoft sparse attention CUDA kernel class SparseAttention(Attention): def __init__( self, *args, block_size = 16, text_seq_len = 256, num_random_blocks = None, **kwargs ): super().__init__(*args, **kwargs) from deepspeed.ops.sparse_attention import SparseSelfAttention, VariableSparsityConfig self.block_size = block_size num_random_blocks = default(num_random_blocks, self.seq_len // block_size // 4) global_block_indices = list(range(ceil(text_seq_len / block_size))) self.attn_fn = SparseSelfAttention( sparsity_config = VariableSparsityConfig( num_heads = self.heads, block = self.block_size, num_random_blocks = num_random_blocks, global_block_indices = global_block_indices, attention = 'unidirectional' if self.causal else 'bidirectional' ), max_seq_length = self.seq_len, attn_mask_mode = 'add' ) def forward(self, x, mask = None, rotary_pos_emb = None): b, n, _, h, device = *x.shape, self.heads, x.device remainder = n % self.block_size mask = default(mask, lambda: torch.ones(b, n, device = device).bool()) if remainder > 0: padding = self.block_size - remainder x = F.pad(x, (0, 0, 0, padding), value = 0) mask = F.pad(mask, (0, padding), value = False) qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv) if exists(rotary_pos_emb): q, k, v = apply_pos_emb(rotary_pos_emb, (q, k, v)) key_pad_mask = None if exists(mask): key_pad_mask = ~mask attn_mask = None if self.causal: i, j = q.shape[-2], k.shape[-2] mask = torch.ones(i, j, device = device).triu_(j - i + 1).bool() attn_mask = torch.zeros(i, j, device = device).to(q) mask_value = max_neg_value(q) / 2 attn_mask.masked_fill_(mask, mask_value) out = self.attn_fn(q, k, v, attn_mask = attn_mask, key_padding_mask = key_pad_mask) out = rearrange(out, 'b h n d -> b n (h d)') out = self.to_out(out) return out[:, :n]