import os import torch import torch.nn as nn import torch.nn.functional as F import torchvision from torch.utils.checkpoint import checkpoint_sequential from models.archs.arch_util import make_layer, default_init_weights, ConvGnSilu, ConvGnLelu from utils.util import checkpoint class ResidualDenseBlock(nn.Module): """Residual Dense Block. Used in RRDB block in ESRGAN. Args: mid_channels (int): Channel number of intermediate features. growth_channels (int): Channels for each growth. """ def __init__(self, mid_channels=64, growth_channels=32): super(ResidualDenseBlock, self).__init__() for i in range(5): out_channels = mid_channels if i == 4 else growth_channels self.add_module( f'conv{i+1}', nn.Conv2d(mid_channels + i * growth_channels, out_channels, 3, 1, 1)) self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) for i in range(5): default_init_weights(getattr(self, f'conv{i+1}'), 0.1) def forward(self, x, identity=None): if identity is None: identity = x x1 = self.lrelu(self.conv1(x)) x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1))) x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1))) x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1))) x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1)) return x5 * 0.2 + identity class RRDBWithBypassAndLatent(nn.Module): def __init__(self, mid_channels, growth_channels=32, latent_dim=256): super(RRDBWithBypassAndLatent, self).__init__() self.latent_process = nn.Sequential(nn.Linear(latent_dim, latent_dim//2, bias=False), nn.LeakyReLU(negative_slope=0.2, inplace=True), nn.Linear(latent_dim//2, mid_channels, bias=False), nn.LeakyReLU(negative_slope=0.2, inplace=True), nn.Linear(mid_channels, mid_channels, bias=True)) self.latent_join = nn.Sequential(ConvGnLelu(mid_channels*2, mid_channels*2, activation=True, norm=False, bias=False), ConvGnLelu(mid_channels*2, mid_channels, activation=False, norm=False, bias=False)) self.rdb1 = ResidualDenseBlock(mid_channels, growth_channels) self.rdb2 = ResidualDenseBlock(mid_channels, growth_channels) self.rdb3 = ResidualDenseBlock(mid_channels, growth_channels) self.bypass = nn.Sequential(ConvGnSilu(mid_channels*2, mid_channels, kernel_size=3, bias=True, activation=True, norm=True), ConvGnSilu(mid_channels, mid_channels//2, kernel_size=3, bias=False, activation=True, norm=False), ConvGnSilu(mid_channels//2, 1, kernel_size=3, bias=False, activation=False, norm=False), nn.Sigmoid()) def forward(self, x, original_latent): b, f, h, w = x.shape latent = self.latent_process(original_latent) b, l = latent.shape latent = latent.view(b, l, 1, 1) latent = latent.repeat(1, 1, h, w) out = self.latent_join(torch.cat([x, latent], dim=1)) out = self.rdb1(out, x) out = self.rdb2(out) out = self.rdb3(out) bypass = self.bypass(torch.cat([x, out], dim=1)) self.bypass_map = bypass.detach().clone() return out * 0.2 * bypass + x class RRDBNetWithLatent(nn.Module): def __init__(self, in_channels, out_channels, mid_channels=64, num_blocks=23, growth_channels=32, blocks_per_checkpoint=4, scale=4, latent_size=256): super(RRDBNetWithLatent, self).__init__() self.num_blocks = num_blocks self.blocks_per_checkpoint = blocks_per_checkpoint self.scale = scale self.in_channels = in_channels self.latent_size = latent_size first_conv_stride = 1 if in_channels <= 4 else scale first_conv_ksize = 3 if first_conv_stride == 1 else 7 first_conv_padding = 1 if first_conv_stride == 1 else 3 self.conv_first = nn.Conv2d(in_channels, mid_channels, first_conv_ksize, first_conv_stride, first_conv_padding) self.body = make_layer( RRDBWithBypassAndLatent, num_blocks, mid_channels=mid_channels, growth_channels=growth_channels, latent_dim=latent_size) self.conv_body = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1) # upsample self.conv_up1 = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1) self.conv_up2 = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1) self.conv_hr = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1) self.conv_last = nn.Conv2d(mid_channels, out_channels, 3, 1, 1) self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) # 8-layer MLP in the vein of StyleGAN. self.latent_encoder = nn.Sequential(nn.Linear(latent_size, latent_size), nn.BatchNorm1d(latent_size), nn.LeakyReLU(negative_slope=0.2, inplace=True), nn.Linear(latent_size, latent_size), nn.BatchNorm1d(latent_size), nn.LeakyReLU(negative_slope=0.2, inplace=True), nn.Linear(latent_size, latent_size), nn.BatchNorm1d(latent_size), nn.LeakyReLU(negative_slope=0.2, inplace=True), nn.Linear(latent_size, latent_size), nn.BatchNorm1d(latent_size), nn.LeakyReLU(negative_slope=0.2, inplace=True), nn.Linear(latent_size, latent_size), nn.BatchNorm1d(latent_size), nn.LeakyReLU(negative_slope=0.2, inplace=True), nn.Linear(latent_size, latent_size), nn.BatchNorm1d(latent_size), nn.LeakyReLU(negative_slope=0.2, inplace=True), nn.Linear(latent_size, latent_size), nn.BatchNorm1d(latent_size), nn.LeakyReLU(negative_slope=0.2, inplace=True), nn.Linear(latent_size, latent_size), nn.BatchNorm1d(latent_size), nn.LeakyReLU(negative_slope=0.2, inplace=True)) for m in [ self.conv_first, self.conv_body, self.conv_up1, self.conv_up2, self.conv_hr, self.conv_last ]: default_init_weights(m, 0.1) def forward(self, x, latent=None, ref=None): if latent is None: latent = torch.randn((x.shape[0], self.latent_size), dtype=torch.float, device=x.device) latent = checkpoint(self.latent_encoder, latent) if self.in_channels > 4: x_lg = F.interpolate(x, scale_factor=self.scale, mode="bicubic") if ref is None: ref = torch.zeros_like(x_lg) x_lg = torch.cat([x_lg, ref], dim=1) else: x_lg = x feat = self.conv_first(x_lg) body_feat = feat for bl in self.body: body_feat = checkpoint(bl, body_feat, latent) body_feat = self.conv_body(body_feat) feat = feat + body_feat # upsample feat = self.lrelu( self.conv_up1(F.interpolate(feat, scale_factor=2, mode='nearest'))) if self.scale == 4: feat = self.lrelu( self.conv_up2(F.interpolate(feat, scale_factor=2, mode='nearest'))) else: feat = self.lrelu(self.conv_up2(feat)) out = self.conv_last(self.lrelu(self.conv_hr(feat))) return out def visual_dbg(self, step, path): for i, bm in enumerate(self.body): torchvision.utils.save_image(bm.bypass_map.cpu().float(), os.path.join(path, "%i_bypass_%i.png" % (step, i+1))) # Based heavily on the same VGG arch used for the discriminator. class LatentEstimator(nn.Module): # input_img_factor = multiplier to support images over 128x128. Only certain factors are supported. def __init__(self, in_nc, nf, latent_size=256): super(LatentEstimator, self).__init__() # [64, 128, 128] self.conv0_0 = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True) self.conv0_1 = nn.Conv2d(nf, nf, 4, 2, 1, bias=False) self.bn0_1 = nn.BatchNorm2d(nf, affine=True) # [64, 64, 64] self.conv1_0 = nn.Conv2d(nf, nf * 2, 3, 1, 1, bias=False) self.bn1_0 = nn.BatchNorm2d(nf * 2, affine=True) self.conv1_1 = nn.Conv2d(nf * 2, nf * 2, 4, 2, 1, bias=False) self.bn1_1 = nn.BatchNorm2d(nf * 2, affine=True) # [128, 32, 32] self.conv2_0 = nn.Conv2d(nf * 2, nf * 4, 3, 1, 1, bias=False) self.bn2_0 = nn.BatchNorm2d(nf * 4, affine=True) self.conv2_1 = nn.Conv2d(nf * 4, nf * 4, 4, 2, 1, bias=False) self.bn2_1 = nn.BatchNorm2d(nf * 4, affine=True) # [256, 16, 16] self.conv3_0 = nn.Conv2d(nf * 4, nf * 8, 3, 1, 1, bias=False) self.bn3_0 = nn.BatchNorm2d(nf * 8, affine=True) self.conv3_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False) self.bn3_1 = nn.BatchNorm2d(nf * 8, affine=True) # [512, 8, 8] self.conv4_0 = nn.Conv2d(nf * 8, nf * 8, 3, 1, 1, bias=False) self.bn4_0 = nn.BatchNorm2d(nf * 8, affine=True) self.conv4_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False) self.bn4_1 = nn.BatchNorm2d(nf * 8, affine=True) final_nf = nf * 8 # activation function self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) self.linear1 = nn.Linear(int(final_nf * 4 * 4), latent_size*2) self.linear2 = nn.Linear(latent_size*2, latent_size) def compute_body(self, x): fea = self.lrelu(self.conv0_0(x)) fea = self.lrelu(self.bn0_1(self.conv0_1(fea))) #fea = torch.cat([fea, skip_med], dim=1) fea = self.lrelu(self.bn1_0(self.conv1_0(fea))) fea = self.lrelu(self.bn1_1(self.conv1_1(fea))) #fea = torch.cat([fea, skip_lo], dim=1) fea = self.lrelu(self.bn2_0(self.conv2_0(fea))) fea = self.lrelu(self.bn2_1(self.conv2_1(fea))) fea = self.lrelu(self.bn3_0(self.conv3_0(fea))) fea = self.lrelu(self.bn3_1(self.conv3_1(fea))) fea = self.lrelu(self.bn4_0(self.conv4_0(fea))) fea = self.lrelu(self.bn4_1(self.conv4_1(fea))) return fea def forward(self, x): fea = checkpoint(self.compute_body, x) fea = fea.contiguous().view(fea.size(0), -1) fea = self.linear1(fea) out = self.linear2(fea) return out