""" Master script that processes all MP3 files found in an input directory. Splits those files up into sub-files of a predetermined duration. """ import argparse import functools import os from multiprocessing.pool import ThreadPool from pathlib import Path import numpy as np import torch from tqdm import tqdm from trainer.injectors.audio_injectors import MusicCheaterLatentInjector, normalize_torch_mel, denormalize_mel from models.audio.music.transformer_diffusion14 import get_cheater_encoder_v2 def report_progress(progress_file, file): with open(progress_file, 'a', encoding='utf-8') as f: f.write(f'{file}\n') def process_folder(file, model, base_path, output_path, progress_file): outdir = os.path.join(output_path, f'{os.path.relpath(os.path.dirname(file), base_path)}') os.makedirs(outdir, exist_ok=True) with np.load(file) as npz_file: mel = torch.tensor(npz_file['arr_0']).cuda().unsqueeze(0) # Fix the normalization issues with the old mels. This should get reverted when these mels are re-generated. mel = normalize_torch_mel(denormalize_mel(mel)) assert mel.min() > -1.001 and mel.max() < 1.001 model = model.cuda() with torch.no_grad(): cheater = model(mel) np.savez(os.path.join(outdir, os.path.basename(file)), cheater.cpu().numpy()) report_progress(progress_file, file) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--path', type=str, help='Path to search for files', default='Y:\\separated\\large_mels') parser.add_argument('--progress_file', type=str, help='Place to store all files that have already been processed', default='Y:\\separated\\large_mel_cheaters\\already_processed.txt') parser.add_argument('--output_path', type=str, help='Path for output files', default='Y:\\separated\\large_mel_cheaters') parser.add_argument('--num_threads', type=int, help='Number of concurrent workers processing files (there must be a GPU per-worker.)', default=1) args = parser.parse_args() os.makedirs(args.output_path, exist_ok=True) processed_files = set() if os.path.exists(args.progress_file): with open(args.progress_file, 'r', encoding='utf-8') as f: for line in f.readlines(): processed_files.add(line.strip()) cache_path = os.path.join(args.output_path, 'cache.pth') if os.path.exists(cache_path): root_music_files = torch.load(cache_path) else: path = Path(args.path) root_music_files = set(path.rglob("*.npz")) torch.save(root_music_files, cache_path) orig_len = len(root_music_files) folders = list(root_music_files - processed_files) print(f"Found {len(folders)} files to process. Total processing is {100 * (orig_len - len(folders)) / orig_len}% complete.") k = 0 for k in range(args.num_threads-1): if os.fork() == 0: break # k is now the process number. partition_len = (len(folders)//args.num_threads)+1 folders = folders[k*partition_len:(k+1)*partition_len] model = get_cheater_encoder_v2().eval().cpu() model.load_state_dict(torch.load('../experiments/tfd14_cheater_encoder.pth', map_location=torch.device('cpu'))) model = model.to(f'cuda:{k}') for folder in tqdm(folders): process_folder(folder, model=model, output_path=args.output_path, base_path=args.path, progress_file=args.progress_file)