DL-Art-School/dlas/sweep.py

66 lines
1.9 KiB
Python

import collections.abc
import copy
import functools
import os
from multiprocessing.pool import ThreadPool
import torch
from dlas.train import Trainer
from dlas.utils import options as option
def deep_update(d, u):
for k, v in u.items():
if isinstance(v, collections.abc.Mapping):
d[k] = deep_update(d.get(k, {}), v)
else:
d[k] = v
return d
def launch_trainer(opt, opt_path, rank):
os.environ['CUDA_VISIBLE_DEVICES'] = str(rank)
print('export CUDA_VISIBLE_DEVICES=' + str(rank))
trainer = Trainer()
opt['dist'] = False
trainer.rank = -1
trainer.init(opt_path, opt, 'none')
trainer.do_training()
if __name__ == '__main__':
"""
Ad-hoc script (hard coded; no command-line parameters) that spawns multiple separate trainers from a single options
file, with a hard-coded set of modifications.
"""
base_opt = '../experiments/sweep_music_mel2vec.yml'
modifications = {
'baseline': {},
'lr1e3': {'steps': {'generator': {'optimizer_params': {'lr': {.001}}}}},
'lr1e5': {'steps': {'generator': {'optimizer_params': {'lr': {.00001}}}}},
'no_warmup': {'train': {'warmup_steps': 0}},
}
base_rank = 4
opt = option.parse(base_opt, is_train=True)
all_opts = []
for i, (mod, mod_dict) in enumerate(modifications.items()):
nd = copy.deepcopy(opt)
deep_update(nd, mod_dict)
nd['name'] = f'{nd["name"]}_{mod}'
nd['wandb_run_name'] = mod
base_path = nd['path']['log']
for k, p in nd['path'].items():
if isinstance(p, str) and base_path in p:
nd['path'][k] = p.replace(base_path, f'{base_path}/{mod}')
all_opts.append(nd)
for i in range(1, len(modifications)):
pid = os.fork()
if pid == 0:
rank = i
break
else:
rank = 0
launch_trainer(all_opts[rank], base_opt, rank+base_rank)