DL-Art-School/dlas/test.py

114 lines
3.8 KiB
Python

import argparse
import logging
import os.path as osp
import random
import time
from collections import OrderedDict
import numpy as np
import torch
from tqdm import tqdm
import dlas.utils
import dlas.utils.options as option
import dlas.utils.util as util
from dlas.data import create_dataloader, create_dataset
from dlas.trainer.ExtensibleTrainer import ExtensibleTrainer
def forward_pass(model, data, output_dir, opt):
alteration_suffix = util.opt_get(opt, ['name'], '')
denorm_range = tuple(util.opt_get(
opt, ['image_normalization_range'], [0, 1]))
with torch.no_grad():
model.feed_data(data, 0, need_GT=need_GT)
model.test()
visuals = model.get_current_visuals(need_GT)['rlt'].cpu()
visuals = (visuals - denorm_range[0]) / (denorm_range[1]-denorm_range[0])
fea_loss = 0
psnr_loss = 0
for i in range(visuals.shape[0]):
img_path = data['GT_path'][i] if need_GT else data['LQ_path'][i]
img_name = osp.splitext(osp.basename(img_path))[0]
sr_img = util.tensor2img(visuals[i]) # uint8
# save images
suffix = alteration_suffix
if suffix:
save_img_path = osp.join(output_dir, img_name + suffix + '.png')
else:
save_img_path = osp.join(output_dir, img_name + '.png')
if need_GT:
psnr_sr = util.tensor2img(visuals[i])
psnr_gt = util.tensor2img(data['hq'][i])
psnr_loss += util.calculate_psnr(psnr_sr, psnr_gt)
util.save_img(sr_img, save_img_path)
return fea_loss, psnr_loss
if __name__ == "__main__":
# Set seeds
torch.manual_seed(5555)
random.seed(5555)
np.random.seed(5555)
# options
torch.backends.cudnn.benchmark = True
want_metrics = False
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to options YAML file.',
default='../options/test_diffusion_unet.yml')
opt = option.parse(parser.parse_args().opt, is_train=False)
opt = option.dict_to_nonedict(opt)
utils.util.loaded_options = opt
util.mkdirs(
(path for key, path in opt['path'].items()
if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key))
util.setup_logger('base', opt['path']['log'], 'test_' + opt['name'], level=logging.INFO,
screen=True, tofile=True)
logger = logging.getLogger('base')
logger.info(option.dict2str(opt))
# Create test dataset and dataloader
test_loaders = []
for phase, dataset_opt in sorted(opt['datasets'].items()):
test_set = create_dataset(dataset_opt)
test_loader = create_dataloader(test_set, dataset_opt)
logger.info('Number of test images in [{:s}]: {:d}'.format(
dataset_opt['name'], len(test_set)))
test_loaders.append(test_loader)
model = ExtensibleTrainer(opt)
fea_loss = 0
psnr_loss = 0
for test_loader in test_loaders:
test_set_name = test_loader.dataset.opt['name']
logger.info('\nTesting [{:s}]...'.format(test_set_name))
test_start_time = time.time()
dataset_dir = osp.join(opt['path']['results_root'], test_set_name)
util.mkdir(dataset_dir)
test_results = OrderedDict()
test_results['psnr'] = []
test_results['ssim'] = []
test_results['psnr_y'] = []
test_results['ssim_y'] = []
tq = tqdm(test_loader)
for data in tq:
need_GT = False if test_loader.dataset.opt['dataroot_GT'] is None else True
need_GT = need_GT and want_metrics
fea_loss, psnr_loss = forward_pass(model, data, dataset_dir, opt)
fea_loss += fea_loss
psnr_loss += psnr_loss
# log
logger.info('# Validation # Fea: {:.4e}, PSNR: {:.4e}'.format(
fea_loss / len(test_loader), psnr_loss / len(test_loader)))