DL-Art-School/codes/test.py
XintaoWang 037933ba66 mmsr
2019-08-23 21:42:47 +08:00

106 lines
4.3 KiB
Python

import os.path as osp
import logging
import time
import argparse
from collections import OrderedDict
import options.options as option
import utils.util as util
from data.util import bgr2ycbcr
from data import create_dataset, create_dataloader
from models import create_model
#### options
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, required=True, help='Path to options YMAL file.')
opt = option.parse(parser.parse_args().opt, is_train=False)
opt = option.dict_to_nonedict(opt)
util.mkdirs(
(path for key, path in opt['path'].items()
if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key))
util.setup_logger('base', opt['path']['log'], 'test_' + opt['name'], level=logging.INFO,
screen=True, tofile=True)
logger = logging.getLogger('base')
logger.info(option.dict2str(opt))
#### Create test dataset and dataloader
test_loaders = []
for phase, dataset_opt in sorted(opt['datasets'].items()):
test_set = create_dataset(dataset_opt)
test_loader = create_dataloader(test_set, dataset_opt)
logger.info('Number of test images in [{:s}]: {:d}'.format(dataset_opt['name'], len(test_set)))
test_loaders.append(test_loader)
model = create_model(opt)
for test_loader in test_loaders:
test_set_name = test_loader.dataset.opt['name']
logger.info('\nTesting [{:s}]...'.format(test_set_name))
test_start_time = time.time()
dataset_dir = osp.join(opt['path']['results_root'], test_set_name)
util.mkdir(dataset_dir)
test_results = OrderedDict()
test_results['psnr'] = []
test_results['ssim'] = []
test_results['psnr_y'] = []
test_results['ssim_y'] = []
for data in test_loader:
need_GT = False if test_loader.dataset.opt['dataroot_GT'] is None else True
model.feed_data(data, need_GT=need_GT)
img_path = data['GT_path'][0] if need_GT else data['LQ_path'][0]
img_name = osp.splitext(osp.basename(img_path))[0]
model.test()
visuals = model.get_current_visuals(need_GT=need_GT)
sr_img = util.tensor2img(visuals['rlt']) # uint8
# save images
suffix = opt['suffix']
if suffix:
save_img_path = osp.join(dataset_dir, img_name + suffix + '.png')
else:
save_img_path = osp.join(dataset_dir, img_name + '.png')
util.save_img(sr_img, save_img_path)
# calculate PSNR and SSIM
if need_GT:
gt_img = util.tensor2img(visuals['GT'])
sr_img, gt_img = util.crop_border([sr_img, gt_img], opt['scale'])
psnr = util.calculate_psnr(sr_img, gt_img)
ssim = util.calculate_ssim(sr_img, gt_img)
test_results['psnr'].append(psnr)
test_results['ssim'].append(ssim)
if gt_img.shape[2] == 3: # RGB image
sr_img_y = bgr2ycbcr(sr_img / 255., only_y=True)
gt_img_y = bgr2ycbcr(gt_img / 255., only_y=True)
psnr_y = util.calculate_psnr(sr_img_y * 255, gt_img_y * 255)
ssim_y = util.calculate_ssim(sr_img_y * 255, gt_img_y * 255)
test_results['psnr_y'].append(psnr_y)
test_results['ssim_y'].append(ssim_y)
logger.info(
'{:20s} - PSNR: {:.6f} dB; SSIM: {:.6f}; PSNR_Y: {:.6f} dB; SSIM_Y: {:.6f}.'.
format(img_name, psnr, ssim, psnr_y, ssim_y))
else:
logger.info('{:20s} - PSNR: {:.6f} dB; SSIM: {:.6f}.'.format(img_name, psnr, ssim))
else:
logger.info(img_name)
if need_GT: # metrics
# Average PSNR/SSIM results
ave_psnr = sum(test_results['psnr']) / len(test_results['psnr'])
ave_ssim = sum(test_results['ssim']) / len(test_results['ssim'])
logger.info(
'----Average PSNR/SSIM results for {}----\n\tPSNR: {:.6f} dB; SSIM: {:.6f}\n'.format(
test_set_name, ave_psnr, ave_ssim))
if test_results['psnr_y'] and test_results['ssim_y']:
ave_psnr_y = sum(test_results['psnr_y']) / len(test_results['psnr_y'])
ave_ssim_y = sum(test_results['ssim_y']) / len(test_results['ssim_y'])
logger.info(
'----Y channel, average PSNR/SSIM----\n\tPSNR_Y: {:.6f} dB; SSIM_Y: {:.6f}\n'.
format(ave_psnr_y, ave_ssim_y))