77 lines
3.3 KiB
Python
77 lines
3.3 KiB
Python
import functools
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import models.archs.arch_util as arch_util
|
|
import torch
|
|
|
|
|
|
class HighToLowResNet(nn.Module):
|
|
''' ResNet that applies a noise channel to the input, then downsamples it. Currently only downscale=4 is supported. '''
|
|
|
|
def __init__(self, in_nc=3, out_nc=3, nf=64, nb=16, downscale=4):
|
|
super(HighToLowResNet, self).__init__()
|
|
self.downscale = downscale
|
|
|
|
# We will always apply a noise channel to the inputs, account for that here.
|
|
in_nc += 1
|
|
|
|
self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
|
|
basic_block = functools.partial(arch_util.ResidualBlock_noBN, nf=nf)
|
|
basic_block2 = functools.partial(arch_util.ResidualBlock_noBN, nf=nf*2)
|
|
# To keep the total model size down, the residual trunks will be applied across 3 downsampling stages.
|
|
# The first will be applied against the hi-res inputs and will have only 4 layers.
|
|
# The second will be applied after half of the downscaling and will also have only 6 layers.
|
|
# The final will be applied against the final resolution and will have all of the remaining layers.
|
|
self.trunk_hires = arch_util.make_layer(basic_block, 5)
|
|
self.trunk_medres = arch_util.make_layer(basic_block, 10)
|
|
self.trunk_lores = arch_util.make_layer(basic_block2, nb - 15)
|
|
|
|
# downsampling
|
|
if self.downscale == 4 or self.downscale == 1:
|
|
self.downconv1 = nn.Conv2d(nf, nf, 3, stride=2, padding=1, bias=True)
|
|
self.downconv2 = nn.Conv2d(nf, nf*2, 3, stride=2, padding=1, bias=True)
|
|
else:
|
|
raise EnvironmentError("Requested downscale not supported: %i" % (downscale,))
|
|
|
|
self.HRconv = nn.Conv2d(nf*2, nf*2, 3, stride=1, padding=1, bias=True)
|
|
if self.downscale == 4:
|
|
self.conv_last = nn.Conv2d(nf*2, out_nc, 3, stride=1, padding=1, bias=True)
|
|
else:
|
|
self.pixel_shuffle = nn.PixelShuffle(4)
|
|
self.conv_last = nn.Conv2d(int(nf/8), out_nc, 3, stride=1, padding=1, bias=True)
|
|
|
|
# activation function
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
|
|
|
# initialization
|
|
arch_util.initialize_weights([self.conv_first, self.HRconv, self.conv_last, self.downconv1, self.downconv2],
|
|
0.1)
|
|
|
|
def forward(self, x):
|
|
# Noise has the same shape as the input with only one channel.
|
|
rand_feature = torch.randn((x.shape[0], 1) + x.shape[2:], device=x.device)
|
|
out = torch.cat([x, rand_feature], dim=1)
|
|
|
|
out = self.lrelu(self.conv_first(out))
|
|
out = self.trunk_hires(out)
|
|
|
|
if self.downscale == 4 or self.downscale == 1:
|
|
out = self.lrelu(self.downconv1(out))
|
|
out = self.trunk_medres(out)
|
|
out = self.lrelu(self.downconv2(out))
|
|
out = self.trunk_lores(out)
|
|
|
|
if self.downscale == 1:
|
|
out = self.lrelu(self.pixel_shuffle(self.HRconv(out)))
|
|
out = self.conv_last(out)
|
|
else:
|
|
out = self.conv_last(self.lrelu(self.HRconv(out)))
|
|
|
|
if self.downscale == 1:
|
|
base = x
|
|
else:
|
|
base = F.interpolate(x, scale_factor=1/self.downscale, mode='bilinear', align_corners=False)
|
|
|
|
out += base
|
|
return out
|