485 lines
21 KiB
Python
485 lines
21 KiB
Python
import functools
|
|
import random
|
|
from collections import OrderedDict
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch import autocast
|
|
from x_transformers import Encoder
|
|
|
|
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
|
|
from models.diffusion.unet_diffusion import AttentionBlock, TimestepEmbedSequential, \
|
|
Downsample, Upsample, TimestepBlock
|
|
from models.gpt_voice.mini_encoder import AudioMiniEncoder
|
|
from models.gpt_voice.unet_diffusion_tts7 import CheckpointedXTransformerEncoder
|
|
from scripts.audio.gen.use_diffuse_tts import ceil_multiple
|
|
from trainer.networks import register_model
|
|
from utils.util import checkpoint, opt_get
|
|
|
|
|
|
def is_latent(t):
|
|
return t.dtype == torch.float
|
|
|
|
def is_sequence(t):
|
|
return t.dtype == torch.long
|
|
|
|
|
|
class ResBlock(TimestepBlock):
|
|
def __init__(
|
|
self,
|
|
channels,
|
|
emb_channels,
|
|
dropout,
|
|
out_channels=None,
|
|
dims=2,
|
|
kernel_size=3,
|
|
efficient_config=True,
|
|
):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.emb_channels = emb_channels
|
|
self.dropout = dropout
|
|
self.out_channels = out_channels or channels
|
|
padding = {1: 0, 3: 1, 5: 2}[kernel_size]
|
|
eff_kernel = 1 if efficient_config else 3
|
|
eff_padding = 0 if efficient_config else 1
|
|
|
|
self.in_layers = nn.Sequential(
|
|
normalization(channels),
|
|
nn.SiLU(),
|
|
conv_nd(dims, channels, self.out_channels, eff_kernel, padding=eff_padding),
|
|
)
|
|
|
|
self.emb_layers = nn.Sequential(
|
|
nn.SiLU(),
|
|
linear(
|
|
emb_channels,
|
|
self.out_channels,
|
|
),
|
|
)
|
|
self.out_layers = nn.Sequential(
|
|
normalization(self.out_channels),
|
|
nn.SiLU(),
|
|
nn.Dropout(p=dropout),
|
|
zero_module(
|
|
conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding)
|
|
),
|
|
)
|
|
|
|
if self.out_channels == channels:
|
|
self.skip_connection = nn.Identity()
|
|
else:
|
|
self.skip_connection = conv_nd(dims, channels, self.out_channels, eff_kernel, padding=eff_padding)
|
|
|
|
def forward(self, x, emb):
|
|
"""
|
|
Apply the block to a Tensor, conditioned on a timestep embedding.
|
|
|
|
:param x: an [N x C x ...] Tensor of features.
|
|
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
|
:return: an [N x C x ...] Tensor of outputs.
|
|
"""
|
|
return checkpoint(
|
|
self._forward, x, emb
|
|
)
|
|
|
|
def _forward(self, x, emb):
|
|
h = self.in_layers(x)
|
|
emb_out = self.emb_layers(emb).type(h.dtype)
|
|
while len(emb_out.shape) < len(h.shape):
|
|
emb_out = emb_out[..., None]
|
|
h = h + emb_out
|
|
h = self.out_layers(h)
|
|
return self.skip_connection(x) + h
|
|
|
|
class DiffusionTts(nn.Module):
|
|
"""
|
|
The full UNet model with attention and timestep embedding.
|
|
|
|
Customized to be conditioned on an aligned prior derived from a autoregressive
|
|
GPT-style model.
|
|
|
|
:param in_channels: channels in the input Tensor.
|
|
:param in_latent_channels: channels from the input latent.
|
|
:param model_channels: base channel count for the model.
|
|
:param out_channels: channels in the output Tensor.
|
|
:param num_res_blocks: number of residual blocks per downsample.
|
|
:param attention_resolutions: a collection of downsample rates at which
|
|
attention will take place. May be a set, list, or tuple.
|
|
For example, if this contains 4, then at 4x downsampling, attention
|
|
will be used.
|
|
:param dropout: the dropout probability.
|
|
:param channel_mult: channel multiplier for each level of the UNet.
|
|
:param conv_resample: if True, use learned convolutions for upsampling and
|
|
downsampling.
|
|
:param dims: determines if the signal is 1D, 2D, or 3D.
|
|
:param num_heads: the number of attention heads in each attention layer.
|
|
:param num_heads_channels: if specified, ignore num_heads and instead use
|
|
a fixed channel width per attention head.
|
|
:param num_heads_upsample: works with num_heads to set a different number
|
|
of heads for upsampling. Deprecated.
|
|
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
|
:param resblock_updown: use residual blocks for up/downsampling.
|
|
:param use_new_attention_order: use a different attention pattern for potentially
|
|
increased efficiency.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model_channels,
|
|
in_channels=1,
|
|
in_latent_channels=1024,
|
|
in_tokens=8193,
|
|
out_channels=2, # mean and variance
|
|
dropout=0,
|
|
# res 1, 2, 4, 8,16,32,64,128,256,512, 1K, 2K
|
|
channel_mult= (1,1.5,2, 3, 4, 6, 8, 12, 16, 24, 32, 48),
|
|
num_res_blocks=(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2),
|
|
# spec_cond: 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0)
|
|
# attn: 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1
|
|
token_conditioning_resolutions=(1,16,),
|
|
attention_resolutions=(512,1024,2048),
|
|
conv_resample=True,
|
|
dims=1,
|
|
use_fp16=False,
|
|
num_heads=1,
|
|
num_head_channels=-1,
|
|
num_heads_upsample=-1,
|
|
kernel_size=3,
|
|
scale_factor=2,
|
|
time_embed_dim_multiplier=4,
|
|
efficient_convs=True, # Uses kernels with width of 1 in several places rather than 3.
|
|
# Parameters for regularization.
|
|
unconditioned_percentage=.1, # This implements a mechanism similar to what is used in classifier-free training.
|
|
# Parameters for super-sampling.
|
|
super_sampling=False,
|
|
super_sampling_max_noising_factor=.1,
|
|
jit_enabled=False,
|
|
):
|
|
super().__init__()
|
|
|
|
if num_heads_upsample == -1:
|
|
num_heads_upsample = num_heads
|
|
|
|
if super_sampling:
|
|
in_channels *= 2 # In super-sampling mode, the LR input is concatenated directly onto the input.
|
|
self.in_channels = in_channels
|
|
self.model_channels = model_channels
|
|
self.out_channels = out_channels
|
|
self.attention_resolutions = attention_resolutions
|
|
self.dropout = dropout
|
|
self.channel_mult = channel_mult
|
|
self.conv_resample = conv_resample
|
|
self.num_heads = num_heads
|
|
self.num_head_channels = num_head_channels
|
|
self.num_heads_upsample = num_heads_upsample
|
|
self.dims = dims
|
|
self.super_sampling_enabled = super_sampling
|
|
self.super_sampling_max_noising_factor = super_sampling_max_noising_factor
|
|
self.unconditioned_percentage = unconditioned_percentage
|
|
self.enable_fp16 = use_fp16
|
|
self.jit_enabled = jit_enabled
|
|
self.jit_forward = None
|
|
padding = 1 if kernel_size == 3 else 2
|
|
down_kernel = 1 if efficient_convs else 3
|
|
|
|
time_embed_dim = model_channels * time_embed_dim_multiplier
|
|
self.time_embed = nn.Sequential(
|
|
linear(model_channels, time_embed_dim),
|
|
nn.SiLU(),
|
|
linear(time_embed_dim, time_embed_dim),
|
|
)
|
|
|
|
conditioning_dim = model_channels * 8
|
|
# Either code_converter or latent_converter is used, depending on what type of conditioning data is fed.
|
|
# This model is meant to be able to be trained on both for efficiency purposes - it is far less computationally
|
|
# complex to generate tokens, while generating latents will normally mean propagating through a deep autoregressive
|
|
# transformer network.
|
|
self.code_converter = nn.Sequential(
|
|
nn.Embedding(in_tokens, conditioning_dim),
|
|
CheckpointedXTransformerEncoder(
|
|
needs_permute=False,
|
|
max_seq_len=-1,
|
|
use_pos_emb=False,
|
|
attn_layers=Encoder(
|
|
dim=conditioning_dim,
|
|
depth=3,
|
|
heads=num_heads,
|
|
ff_dropout=dropout,
|
|
attn_dropout=dropout,
|
|
use_rmsnorm=True,
|
|
ff_glu=True,
|
|
rotary_emb_dim=True,
|
|
)
|
|
))
|
|
self.latent_converter = nn.Conv1d(in_latent_channels, conditioning_dim, 1)
|
|
self.aligned_latent_padding_embedding = nn.Parameter(torch.randn(1,in_latent_channels,1))
|
|
self.contextual_embedder = AudioMiniEncoder(1, conditioning_dim, base_channels=32, depth=6, resnet_blocks=1,
|
|
attn_blocks=3, num_attn_heads=8, dropout=dropout, downsample_factor=4, kernel_size=5)
|
|
self.conditioning_conv = nn.Conv1d(conditioning_dim*2, conditioning_dim, 1)
|
|
self.unconditioned_embedding = nn.Parameter(torch.randn(1,conditioning_dim,1))
|
|
self.conditioning_timestep_integrator = TimestepEmbedSequential(
|
|
ResBlock(conditioning_dim, time_embed_dim, dropout, out_channels=conditioning_dim, dims=dims, kernel_size=1),
|
|
AttentionBlock(conditioning_dim, num_heads=num_heads, num_head_channels=num_head_channels),
|
|
ResBlock(conditioning_dim, time_embed_dim, dropout, out_channels=conditioning_dim, dims=dims, kernel_size=1),
|
|
AttentionBlock(conditioning_dim, num_heads=num_heads, num_head_channels=num_head_channels),
|
|
ResBlock(conditioning_dim, time_embed_dim, dropout, out_channels=conditioning_dim, dims=dims, kernel_size=1),
|
|
)
|
|
|
|
self.input_blocks = nn.ModuleList(
|
|
[
|
|
TimestepEmbedSequential(
|
|
conv_nd(dims, in_channels, model_channels, kernel_size, padding=padding)
|
|
)
|
|
]
|
|
)
|
|
token_conditioning_blocks = []
|
|
self._feature_size = model_channels
|
|
input_block_chans = [model_channels]
|
|
ch = model_channels
|
|
ds = 1
|
|
|
|
for level, (mult, num_blocks) in enumerate(zip(channel_mult, num_res_blocks)):
|
|
if ds in token_conditioning_resolutions:
|
|
token_conditioning_block = nn.Conv1d(conditioning_dim, ch, 1)
|
|
token_conditioning_block.weight.data *= .02
|
|
self.input_blocks.append(token_conditioning_block)
|
|
token_conditioning_blocks.append(token_conditioning_block)
|
|
|
|
for _ in range(num_blocks):
|
|
layers = [
|
|
ResBlock(
|
|
ch,
|
|
time_embed_dim,
|
|
dropout,
|
|
out_channels=int(mult * model_channels),
|
|
dims=dims,
|
|
kernel_size=kernel_size,
|
|
efficient_config=efficient_convs
|
|
)
|
|
]
|
|
ch = int(mult * model_channels)
|
|
if ds in attention_resolutions:
|
|
layers.append(
|
|
AttentionBlock(
|
|
ch,
|
|
num_heads=num_heads,
|
|
num_head_channels=num_head_channels,
|
|
)
|
|
)
|
|
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
|
self._feature_size += ch
|
|
input_block_chans.append(ch)
|
|
if level != len(channel_mult) - 1:
|
|
out_ch = ch
|
|
self.input_blocks.append(
|
|
TimestepEmbedSequential(
|
|
Downsample(
|
|
ch, conv_resample, dims=dims, out_channels=out_ch, factor=scale_factor, ksize=down_kernel, pad=0 if down_kernel == 1 else 1
|
|
)
|
|
)
|
|
)
|
|
ch = out_ch
|
|
input_block_chans.append(ch)
|
|
ds *= 2
|
|
self._feature_size += ch
|
|
|
|
self.middle_block = TimestepEmbedSequential(
|
|
ResBlock(
|
|
ch,
|
|
time_embed_dim,
|
|
dropout,
|
|
dims=dims,
|
|
kernel_size=kernel_size,
|
|
efficient_config=efficient_convs,
|
|
),
|
|
AttentionBlock(
|
|
ch,
|
|
num_heads=num_heads,
|
|
num_head_channels=num_head_channels,
|
|
),
|
|
ResBlock(
|
|
ch,
|
|
time_embed_dim,
|
|
dropout,
|
|
dims=dims,
|
|
kernel_size=kernel_size,
|
|
efficient_config=efficient_convs,
|
|
),
|
|
)
|
|
self._feature_size += ch
|
|
|
|
self.output_blocks = nn.ModuleList([])
|
|
for level, (mult, num_blocks) in list(enumerate(zip(channel_mult, num_res_blocks)))[::-1]:
|
|
for i in range(num_blocks + 1):
|
|
ich = input_block_chans.pop()
|
|
layers = [
|
|
ResBlock(
|
|
ch + ich,
|
|
time_embed_dim,
|
|
dropout,
|
|
out_channels=int(model_channels * mult),
|
|
dims=dims,
|
|
kernel_size=kernel_size,
|
|
efficient_config=efficient_convs,
|
|
)
|
|
]
|
|
ch = int(model_channels * mult)
|
|
if ds in attention_resolutions:
|
|
layers.append(
|
|
AttentionBlock(
|
|
ch,
|
|
num_heads=num_heads_upsample,
|
|
num_head_channels=num_head_channels,
|
|
)
|
|
)
|
|
if level and i == num_blocks:
|
|
out_ch = ch
|
|
layers.append(
|
|
Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, factor=scale_factor)
|
|
)
|
|
ds //= 2
|
|
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
|
self._feature_size += ch
|
|
|
|
self.out = nn.Sequential(
|
|
normalization(ch),
|
|
nn.SiLU(),
|
|
zero_module(conv_nd(dims, model_channels, out_channels, kernel_size, padding=padding)),
|
|
)
|
|
|
|
def get_grad_norm_parameter_groups(self):
|
|
groups = {
|
|
'minicoder': list(self.contextual_embedder.parameters()),
|
|
'input_blocks': list(self.input_blocks.parameters()),
|
|
'output_blocks': list(self.output_blocks.parameters()),
|
|
'middle_transformer': list(self.middle_block.parameters()),
|
|
}
|
|
return groups
|
|
|
|
def forward(self, x, timesteps, aligned_conditioning, conditioning_input, lr_input=None, conditioning_free=False):
|
|
"""
|
|
Apply the model to an input batch.
|
|
|
|
:param x: an [N x C x ...] Tensor of inputs.
|
|
:param timesteps: a 1-D batch of timesteps.
|
|
:param aligned_conditioning: an aligned latent or sequence of tokens providing useful data about the sample to be produced.
|
|
:param conditioning_input: a full-resolution audio clip that is used as a reference to the style you want decoded.
|
|
:param lr_input: for super-sampling models, a guidance audio clip at a lower sampling rate.
|
|
:param conditioning_free: When set, all conditioning inputs (including tokens and conditioning_input) will not be considered.
|
|
:return: an [N x C x ...] Tensor of outputs.
|
|
"""
|
|
assert conditioning_input is not None
|
|
if self.super_sampling_enabled:
|
|
assert lr_input is not None
|
|
if self.training and self.super_sampling_max_noising_factor > 0:
|
|
noising_factor = random.uniform(0,self.super_sampling_max_noising_factor)
|
|
lr_input = torch.randn_like(lr_input) * noising_factor + lr_input
|
|
lr_input = F.interpolate(lr_input, size=(x.shape[-1],), mode='nearest')
|
|
x = torch.cat([x, lr_input], dim=1)
|
|
|
|
# Shuffle aligned_latent to BxCxS format
|
|
if is_latent(aligned_conditioning):
|
|
aligned_conditioning = aligned_conditioning.permute(0, 2, 1)
|
|
|
|
# Fix input size to the proper multiple of 2 so we don't get alignment errors going down and back up the U-net.
|
|
orig_x_shape = x.shape[-1]
|
|
cm = ceil_multiple(x.shape[-1], 2048)
|
|
if cm != 0:
|
|
pc = (cm-x.shape[-1])/x.shape[-1]
|
|
x = F.pad(x, (0,cm-x.shape[-1]))
|
|
# Also fix aligned_latent, which is aligned to x.
|
|
if is_latent(aligned_conditioning):
|
|
aligned_conditioning = torch.cat([aligned_conditioning,
|
|
self.aligned_latent_padding_embedding.repeat(x.shape[0], 1, int(pc * aligned_conditioning.shape[-1]))], dim=-1)
|
|
else:
|
|
aligned_conditioning = F.pad(aligned_conditioning, (0,int(pc*aligned_conditioning.shape[-1])))
|
|
|
|
with autocast(x.device.type, enabled=self.enable_fp16):
|
|
|
|
hs = []
|
|
time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
|
|
|
# Note: this block does not need to repeated on inference, since it is not timestep-dependent.
|
|
if conditioning_free:
|
|
code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, 1)
|
|
else:
|
|
cond_emb = self.contextual_embedder(conditioning_input)
|
|
if is_latent(aligned_conditioning):
|
|
code_emb = self.latent_converter(aligned_conditioning)
|
|
else:
|
|
code_emb = self.code_converter(aligned_conditioning)
|
|
cond_emb = cond_emb.unsqueeze(-1).repeat(1, 1, code_emb.shape[-1])
|
|
code_emb = self.conditioning_conv(torch.cat([cond_emb, code_emb], dim=1))
|
|
# Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance.
|
|
if self.training and self.unconditioned_percentage > 0:
|
|
unconditioned_batches = torch.rand((code_emb.shape[0], 1, 1),
|
|
device=code_emb.device) < self.unconditioned_percentage
|
|
code_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(x.shape[0], 1, 1),
|
|
code_emb)
|
|
|
|
# Everything after this comment is timestep dependent.
|
|
code_emb = self.conditioning_timestep_integrator(code_emb, time_emb)
|
|
|
|
first = True
|
|
time_emb = time_emb.float()
|
|
h = x
|
|
for k, module in enumerate(self.input_blocks):
|
|
if isinstance(module, nn.Conv1d):
|
|
h_tok = F.interpolate(module(code_emb), size=(h.shape[-1]), mode='nearest')
|
|
h = h + h_tok
|
|
else:
|
|
with autocast(x.device.type, enabled=self.enable_fp16 and not first):
|
|
# First block has autocast disabled to allow a high precision signal to be properly vectorized.
|
|
h = module(h, time_emb)
|
|
hs.append(h)
|
|
first = False
|
|
h = self.middle_block(h, time_emb)
|
|
for module in self.output_blocks:
|
|
h = torch.cat([h, hs.pop()], dim=1)
|
|
h = module(h, time_emb)
|
|
|
|
# Last block also has autocast disabled for high-precision outputs.
|
|
h = h.float()
|
|
out = self.out(h)
|
|
|
|
return out[:, :, :orig_x_shape]
|
|
|
|
|
|
@register_model
|
|
def register_diffusion_tts9(opt_net, opt):
|
|
return DiffusionTts(**opt_net['kwargs'])
|
|
|
|
@register_model
|
|
def register_traced_diffusion_tts9(opt_net, opt):
|
|
# Cannot use branching logic when training with torchscript.
|
|
assert(opt_get(opt_net['kwargs'], ['unconditioned_percentage'], 0) == 0)
|
|
model = DiffusionTts(**opt_net['kwargs'])
|
|
model = torch.jit.trace(model, example_inputs=(torch.randn(2,1,32868), torch.LongTensor([600,600]), torch.randn(2,388,1024),torch.randn(2,1,44000)))
|
|
return model
|
|
|
|
|
|
if __name__ == '__main__':
|
|
clip = torch.randn(2, 1, 32868)
|
|
aligned_latent = torch.randn(2,388,1024)
|
|
aligned_sequence = torch.randint(0,8192,(2,388))
|
|
cond = torch.randn(2, 1, 44000)
|
|
ts = torch.LongTensor([600, 600])
|
|
model = DiffusionTts(128,
|
|
channel_mult=[1,1.5,2, 3, 4, 6, 8],
|
|
num_res_blocks=[2, 2, 2, 2, 2, 2, 1],
|
|
token_conditioning_resolutions=[1,4,16,64],
|
|
attention_resolutions=[],
|
|
num_heads=8,
|
|
kernel_size=3,
|
|
scale_factor=2,
|
|
time_embed_dim_multiplier=4,
|
|
super_sampling=False,
|
|
efficient_convs=False)
|
|
# Test with latent aligned conditioning
|
|
o = model(clip, ts, aligned_latent, cond)
|
|
# Test with sequence aligned conditioning
|
|
o = model(clip, ts, aligned_sequence, cond)
|
|
|