DL-Art-School/codes/models/archs/arch_util.py
2020-06-06 18:31:02 -06:00

356 lines
14 KiB
Python

import torch
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F
import torch.nn.utils.spectral_norm as SpectralNorm
from math import sqrt
def pixel_norm(x, epsilon=1e-8):
return x * torch.rsqrt(torch.mean(torch.pow(x, 2), dim=1, keepdims=True) + epsilon)
def initialize_weights(net_l, scale=1):
if not isinstance(net_l, list):
net_l = [net_l]
for net in net_l:
for m in net.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, a=0, mode='fan_in')
m.weight.data *= scale # for residual block
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
init.kaiming_normal_(m.weight, a=0, mode='fan_in')
m.weight.data *= scale
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias.data, 0.0)
def make_layer(block, n_layers, return_layers=False):
layers = []
for _ in range(n_layers):
layers.append(block())
if return_layers:
return nn.Sequential(*layers), layers
else:
return nn.Sequential(*layers)
class DynamicConv2d(nn.Module):
def __init__(self, nf_in_per_conv, nf_out_per_conv, kernel_size, stride=1, pads=0, has_bias=True, num_convs=8,
att_kernel_size=5, att_pads=2, initial_temperature=1):
super(DynamicConv2d, self).__init__()
# Requirements: input filter count is even, and there are more filters than there are sequences to attend to.
assert nf_in_per_conv % 2 == 0
assert nf_in_per_conv / 2 >= num_convs
self.nf = nf_out_per_conv
self.num_convs = num_convs
self.conv_list = nn.ModuleList([nn.Conv2d(nf_in_per_conv, nf_out_per_conv, kernel_size, stride, pads, bias=has_bias) for _ in range(num_convs)])
self.attention_conv1 = nn.Conv2d(nf_in_per_conv, int(nf_in_per_conv/2), att_kernel_size, stride, att_pads, bias=True)
self.att_bn1 = nn.BatchNorm2d(int(nf_in_per_conv/2))
self.attention_conv2 = nn.Conv2d(int(nf_in_per_conv/2), num_convs, att_kernel_size, 1, att_pads, bias=True)
self.softmax = nn.Softmax(dim=-1)
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
self.temperature = initial_temperature
def set_attention_temperature(self, temp):
self.temperature = temp
def forward(self, x, output_attention_weights=False):
# Build up the individual conv components first.
conv_outputs = []
for conv in self.conv_list:
conv_outputs.append(conv.forward(x))
conv_outputs = torch.stack(conv_outputs, dim=0).permute(1, 3, 4, 2, 0)
# Now calculate the attention across those convs.
conv_attention = self.lrelu(self.att_bn1(self.attention_conv1(x)))
conv_attention = self.attention_conv2(conv_attention).permute(0, 2, 3, 1)
conv_attention = self.softmax(conv_attention / self.temperature)
# conv_outputs shape: (batch, width, height, filters, sequences)
# conv_attention shape: (batch, width, height, sequences)
# We want to format them so that we can matmul them together to produce:
# desired shape: (batch, width, height, filters)
# Note: conv_attention will generally be cast to float32 regardless of the input type, so cast conv_outputs to
# float32 as well to match it.
attention_result = torch.einsum("...ij,...j->...i", [conv_outputs.to(dtype=torch.float32), conv_attention])
# Remember to shift the filters back into the expected slot.
if output_attention_weights:
return attention_result.permute(0, 3, 1, 2), conv_attention
else:
return attention_result.permute(0, 3, 1, 2)
def compute_attention_specificity(att_weights, topk=3):
att = att_weights.detach()
vals, indices = torch.topk(att, topk, dim=-1)
avg = torch.sum(vals, dim=-1)
avg = avg.flatten().mean()
return avg.item(), indices.flatten().detach()
class DynamicConvTestModule(nn.Module):
def __init__(self):
super(DynamicConvTestModule, self).__init__()
self.init_conv = nn.Conv2d(3, 16, 3, 1, 1, bias=True)
self.conv1 = DynamicConv2d(16, 32, 3, stride=2, pads=1, num_convs=4, initial_temperature=10)
self.bn1 = nn.BatchNorm2d(32)
self.conv2 = DynamicConv2d(32, 64, 3, stride=2, pads=1, att_kernel_size=3, att_pads=1, num_convs=8, initial_temperature=10)
self.bn2 = nn.BatchNorm2d(64)
self.conv3 = DynamicConv2d(64, 128, 3, stride=2, pads=1, att_kernel_size=3, att_pads=1, num_convs=16, initial_temperature=10)
self.bn3 = nn.BatchNorm2d(128)
self.relu = nn.ReLU()
self.dense1 = nn.Linear(128 * 4 * 4, 256)
self.dense2 = nn.Linear(256, 100)
self.softmax = nn.Softmax(-1)
def set_temp(self, temp):
self.conv1.set_attention_temperature(temp)
self.conv2.set_attention_temperature(temp)
self.conv3.set_attention_temperature(temp)
def forward(self, x):
x = self.init_conv(x)
x, att1 = self.conv1(x, output_attention_weights=True)
x = self.relu(self.bn1(x))
x, att2 = self.conv2(x, output_attention_weights=True)
x = self.relu(self.bn2(x))
x, att3 = self.conv3(x, output_attention_weights=True)
x = self.relu(self.bn3(x))
atts = [att1, att2, att3]
usage_hists = []
mean = 0
for a in atts:
m, u = compute_attention_specificity(a)
mean += m
usage_hists.append(u)
mean /= 3
x = x.flatten(1)
x = self.relu(self.dense1(x))
x = self.dense2(x)
# Compute metrics across attention weights.
return self.softmax(x), mean, usage_hists
class StandardConvTestModule(nn.Module):
def __init__(self):
super(StandardConvTestModule, self).__init__()
self.init_conv = nn.Conv2d(3, 16, 3, 1, 1, bias=True)
self.conv1 = nn.Conv2d(16, 64, 3, stride=2, padding=1)
self.bn1 = nn.BatchNorm2d(64)
self.conv2 = nn.Conv2d(64, 128, 3, stride=2, padding=1)
self.bn2 = nn.BatchNorm2d(128)
self.conv3 = nn.Conv2d(128, 256, 3, stride=2, padding=1)
self.bn3 = nn.BatchNorm2d(256)
self.relu = nn.ReLU()
self.dense1 = nn.Linear(256 * 4 * 4, 256)
self.dense2 = nn.Linear(256, 100)
self.softmax = nn.Softmax(-1)
def set_temp(self, temp):
pass
def forward(self, x):
x = self.init_conv(x)
x = self.conv1(x)
x = self.relu(self.bn1(x))
x = self.conv2(x)
x = self.relu(self.bn2(x))
x = self.conv3(x)
x = self.relu(self.bn3(x))
x = x.flatten(1)
x = self.relu(self.dense1(x))
x = self.dense2(x)
return self.softmax(x), 0, []
import torch.optim as optim
from torchvision import datasets, models, transforms
import tqdm
from torch.utils.tensorboard import SummaryWriter
def test_dynamic_conv():
writer = SummaryWriter()
dataset = datasets.ImageFolder("C:\\data\\cifar-100-python\\images\\train", transforms.Compose([
transforms.Resize(32, 32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]))
batch_size = 256
temperature = 30
loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=4)
device = torch.device("cuda:0")
net = StandardConvTestModule()
net = net.to(device)
net.set_temp(temperature)
initialize_weights(net)
optimizer = optim.Adam(net.parameters(), lr=1e-3)
# Load state, where necessary.
'''
netstate, optimstate = torch.load("test_net.pth")
net.load_state_dict(netstate)
optimizer.load_state_dict(optimstate)
'''
criterion = nn.CrossEntropyLoss()
step = 0
running_corrects = 0
running_att_mean = 0
running_att_hist = None
for e in range(300):
tq = tqdm.tqdm(loader)
for batch, labels in tq:
batch = batch.to(device)
labels = labels.to(device)
optimizer.zero_grad()
logits, att_mean, att_usage_hist = net.forward(batch)
running_att_mean += att_mean
if running_att_hist is None:
running_att_hist = att_usage_hist
else:
for i in range(len(att_usage_hist)):
running_att_hist[i] = torch.cat([running_att_hist[i], att_usage_hist[i]]).flatten()
loss = criterion(logits, labels)
loss.backward()
'''
if step % 50 == 0:
c1_grad_avg = sum([m.weight.grad.abs().mean().item() for m in net.conv1.conv_list._modules.values()]) / len(net.conv1.conv_list._modules)
c1a_grad_avg = (net.conv1.attention_conv1.weight.grad.abs().mean() + net.conv1.attention_conv2.weight.grad.abs().mean()) / 2
c2_grad_avg = sum([m.weight.grad.abs().mean().item() for m in net.conv2.conv_list._modules.values()]) / len(net.conv2.conv_list._modules)
c2a_grad_avg = (net.conv2.attention_conv1.weight.grad.abs().mean() + net.conv2.attention_conv2.weight.grad.abs().mean()) / 2
c3_grad_avg = sum([m.weight.grad.abs().mean().item() for m in net.conv3.conv_list._modules.values()]) / len(net.conv3.conv_list._modules)
c3a_grad_avg = (net.conv3.attention_conv1.weight.grad.abs().mean() + net.conv3.attention_conv2.weight.grad.abs().mean()) / 2
writer.add_scalar("c1_grad_avg", c1_grad_avg, global_step=step)
writer.add_scalar("c2_grad_avg", c2_grad_avg, global_step=step)
writer.add_scalar("c3_grad_avg", c3_grad_avg, global_step=step)
writer.add_scalar("c1a_grad_avg", c1a_grad_avg, global_step=step)
writer.add_scalar("c2a_grad_avg", c2a_grad_avg, global_step=step)
writer.add_scalar("c3a_grad_avg", c3a_grad_avg, global_step=step)
'''
optimizer.step()
_, preds = torch.max(logits, 1)
running_corrects += torch.sum(preds == labels.data)
if step % 50 == 0:
print("Step: %i, Loss: %f, acc: %f, att_mean: %f" % (step, loss.item(), running_corrects / (50.0 * batch_size),
running_att_mean / 50.0))
writer.add_scalar("Loss", loss.item(), global_step=step)
writer.add_scalar("Accuracy", running_corrects / (50.0 * batch_size), global_step=step)
writer.add_scalar("Att Mean", running_att_mean / 50, global_step=step)
for i in range(len(running_att_hist)):
writer.add_histogram("Att Hist %i" % (i,), running_att_hist[i], global_step=step)
writer.flush()
running_corrects = 0
running_att_mean = 0
running_att_hist = None
if step % 1000 == 0:
temperature = max(temperature-1, 1)
net.set_temp(temperature)
print("Temperature drop. Now: %i" % (temperature,))
step += 1
torch.save((net.state_dict(), optimizer.state_dict()), "test_net_standard.pth")
if __name__ == '__main__':
test_dynamic_conv()
class ResidualBlock(nn.Module):
'''Residual block with BN
---Conv-BN-ReLU-Conv-+-
|________________|
'''
def __init__(self, nf=64):
super(ResidualBlock, self).__init__()
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.BN1 = nn.BatchNorm2d(nf)
self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.BN2 = nn.BatchNorm2d(nf)
# initialization
initialize_weights([self.conv1, self.conv2], 0.1)
def forward(self, x):
identity = x
out = self.lrelu(self.BN1(self.conv1(x)))
out = self.BN2(self.conv2(out))
return identity + out
class ResidualBlockSpectralNorm(nn.Module):
'''Residual block with Spectral Normalization.
---SpecConv-ReLU-SpecConv-+-
|________________|
'''
def __init__(self, nf, total_residual_blocks):
super(ResidualBlockSpectralNorm, self).__init__()
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
self.conv1 = SpectralNorm(nn.Conv2d(nf, nf, 3, 1, 1, bias=True))
self.conv2 = SpectralNorm(nn.Conv2d(nf, nf, 3, 1, 1, bias=True))
initialize_weights([self.conv1, self.conv2], 1)
def forward(self, x):
identity = x
out = self.lrelu(self.conv1(x))
out = self.conv2(out)
return identity + out
class ResidualBlock_noBN(nn.Module):
'''Residual block w/o BN
---Conv-ReLU-Conv-+-
|________________|
'''
def __init__(self, nf=64):
super(ResidualBlock_noBN, self).__init__()
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
# initialization
initialize_weights([self.conv1, self.conv2], 0.1)
def forward(self, x):
identity = x
out = self.lrelu(self.conv1(x))
out = self.conv2(out)
return identity + out
def flow_warp(x, flow, interp_mode='bilinear', padding_mode='zeros'):
"""Warp an image or feature map with optical flow
Args:
x (Tensor): size (N, C, H, W)
flow (Tensor): size (N, H, W, 2), normal value
interp_mode (str): 'nearest' or 'bilinear'
padding_mode (str): 'zeros' or 'border' or 'reflection'
Returns:
Tensor: warped image or feature map
"""
assert x.size()[-2:] == flow.size()[1:3]
B, C, H, W = x.size()
# mesh grid
grid_y, grid_x = torch.meshgrid(torch.arange(0, H), torch.arange(0, W))
grid = torch.stack((grid_x, grid_y), 2).float() # W(x), H(y), 2
grid.requires_grad = False
grid = grid.type_as(x)
vgrid = grid + flow
# scale grid to [-1,1]
vgrid_x = 2.0 * vgrid[:, :, :, 0] / max(W - 1, 1) - 1.0
vgrid_y = 2.0 * vgrid[:, :, :, 1] / max(H - 1, 1) - 1.0
vgrid_scaled = torch.stack((vgrid_x, vgrid_y), dim=3)
output = F.grid_sample(x, vgrid_scaled, mode=interp_mode, padding_mode=padding_mode)
return output