DL-Art-School/codes/models/eval/flow_gaussian_nll.py
2020-12-02 14:09:54 -07:00

38 lines
1.3 KiB
Python

import os
import torch
import os.path as osp
import torchvision
from torch.utils.data import DataLoader
import models.eval.evaluator as evaluator
from pytorch_fid import fid_score
# Evaluate how close to true Gaussian a flow network predicts in a "normal" pass given a LQ/HQ image pair.
from data.image_folder_dataset import ImageFolderDataset
from models.archs.srflow_orig.flow import GaussianDiag
class FlowGaussianNll(evaluator.Evaluator):
def __init__(self, model, opt_eval, env):
super().__init__(model, opt_eval, env)
self.batch_sz = opt_eval['batch_size']
self.dataset = ImageFolderDataset(opt_eval['dataset'])
self.dataloader = DataLoader(self.dataset, self.batch_sz)
def perform_eval(self):
total_zs = 0
z_loss = 0
with torch.no_grad():
for batch in self.dataloader:
z, _, _ = self.model(gt=batch['GT'],
lr=batch['LQ'],
epses=[],
reverse=False,
add_gt_noise=False)
for z_ in z:
z_loss += GaussianDiag.logp(None, None, z_).mean()
total_zs += 1
return {"gaussian_diff": z_loss / total_zs}