43 lines
1.3 KiB
Python
43 lines
1.3 KiB
Python
import os.path
|
|
|
|
import numpy as np
|
|
import torch
|
|
from scipy.io.wavfile import read
|
|
|
|
|
|
def get_mask_from_lengths(lengths, max_len=None):
|
|
if max_len is None:
|
|
max_len = torch.max(lengths).item()
|
|
ids = torch.arange(0, max_len, out=torch.LongTensor(max_len)).to(lengths.device)
|
|
mask = (ids < lengths.unsqueeze(1)).bool()
|
|
return mask
|
|
|
|
|
|
def load_wav_to_torch(full_path):
|
|
sampling_rate, data = read(full_path)
|
|
if data.dtype == np.int32:
|
|
norm_fix = 2 ** 31
|
|
elif data.dtype == np.int16:
|
|
norm_fix = 2 ** 15
|
|
elif data.dtype == np.float16 or data.dtype == np.float32:
|
|
norm_fix = 1.
|
|
else:
|
|
raise NotImplemented(f"Provided data dtype not supported: {data.dtype}")
|
|
return (torch.FloatTensor(data.astype(np.float32)) / norm_fix, sampling_rate)
|
|
|
|
|
|
def load_filepaths_and_text(filename, split="|"):
|
|
with open(filename, encoding='utf-8') as f:
|
|
filepaths_and_text = [line.strip().split(split) for line in f]
|
|
base = os.path.dirname(filename)
|
|
for j in range(len(filepaths_and_text)):
|
|
filepaths_and_text[j][0] = os.path.join(base, filepaths_and_text[j][0])
|
|
return filepaths_and_text
|
|
|
|
|
|
def to_gpu(x):
|
|
x = x.contiguous()
|
|
|
|
if torch.cuda.is_available():
|
|
x = x.cuda(non_blocking=True)
|
|
return torch.autograd.Variable(x) |