243 lines
10 KiB
Python
243 lines
10 KiB
Python
import os
|
|
import os
|
|
import random
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import torch.utils.data
|
|
import torchaudio
|
|
from tqdm import tqdm
|
|
|
|
from data.audio.unsupervised_audio_dataset import load_audio
|
|
from data.util import find_files_of_type, is_audio_file
|
|
from models.tacotron2.taco_utils import load_filepaths_and_text
|
|
from models.tacotron2.text import text_to_sequence
|
|
from utils.util import opt_get
|
|
|
|
|
|
def load_tsv(filename):
|
|
with open(filename, encoding='utf-8') as f:
|
|
components = [line.strip().split('\t') for line in f]
|
|
base = os.path.dirname(filename)
|
|
filepaths_and_text = [[os.path.join(base, f'{component[1]}'), component[0]] for component in components]
|
|
return filepaths_and_text
|
|
|
|
|
|
def load_mozilla_cv(filename):
|
|
with open(filename, encoding='utf-8') as f:
|
|
components = [line.strip().split('\t') for line in f][1:] # First line is the header
|
|
base = os.path.dirname(filename)
|
|
filepaths_and_text = [[os.path.join(base, f'clips/{component[1]}'), component[2]] for component in components]
|
|
return filepaths_and_text
|
|
|
|
|
|
def load_voxpopuli(filename):
|
|
with open(filename, encoding='utf-8') as f:
|
|
lines = [line.strip().split('\t') for line in f][1:] # First line is the header
|
|
base = os.path.dirname(filename)
|
|
filepaths_and_text = []
|
|
for line in lines:
|
|
if len(line) == 0:
|
|
continue
|
|
file, raw_text, norm_text, speaker_id, split, gender = line
|
|
year = file[:4]
|
|
filepaths_and_text.append([os.path.join(base, year, f'{file}.ogg.wav'), raw_text])
|
|
return filepaths_and_text
|
|
|
|
|
|
class TextWavLoader(torch.utils.data.Dataset):
|
|
def __init__(self, hparams):
|
|
self.path = hparams['path']
|
|
if not isinstance(self.path, list):
|
|
self.path = [self.path]
|
|
|
|
fetcher_mode = opt_get(hparams, ['fetcher_mode'], 'lj')
|
|
if not isinstance(fetcher_mode, list):
|
|
fetcher_mode = [fetcher_mode]
|
|
assert len(self.path) == len(fetcher_mode)
|
|
|
|
self.load_conditioning = opt_get(hparams, ['load_conditioning'], False)
|
|
self.conditioning_candidates = opt_get(hparams, ['num_conditioning_candidates'], 3)
|
|
self.conditioning_length = opt_get(hparams, ['conditioning_length'], 44100)
|
|
self.audiopaths_and_text = []
|
|
for p, fm in zip(self.path, fetcher_mode):
|
|
if fm == 'lj' or fm == 'libritts':
|
|
fetcher_fn = load_filepaths_and_text
|
|
elif fm == 'tsv':
|
|
fetcher_fn = load_tsv
|
|
elif fm == 'mozilla_cv':
|
|
assert not self.load_conditioning # Conditioning inputs are incompatible with mozilla_cv
|
|
fetcher_fn = load_mozilla_cv
|
|
elif fm == 'voxpopuli':
|
|
assert not self.load_conditioning # Conditioning inputs are incompatible with voxpopuli
|
|
fetcher_fn = load_voxpopuli
|
|
else:
|
|
raise NotImplementedError()
|
|
self.audiopaths_and_text.extend(fetcher_fn(p))
|
|
self.text_cleaners = hparams.text_cleaners
|
|
self.sample_rate = hparams.sample_rate
|
|
random.seed(hparams.seed)
|
|
random.shuffle(self.audiopaths_and_text)
|
|
self.max_wav_len = opt_get(hparams, ['max_wav_length'], None)
|
|
self.max_text_len = opt_get(hparams, ['max_text_length'], None)
|
|
# If needs_collate=False, all outputs will be aligned and padded at maximum length.
|
|
self.needs_collate = opt_get(hparams, ['needs_collate'], True)
|
|
if not self.needs_collate:
|
|
assert self.max_wav_len is not None and self.max_text_len is not None
|
|
|
|
def get_wav_text_pair(self, audiopath_and_text):
|
|
# separate filename and text
|
|
audiopath, text = audiopath_and_text[0], audiopath_and_text[1]
|
|
text_seq = self.get_text(text)
|
|
wav = load_audio(audiopath, self.sample_rate)
|
|
return (text_seq, wav, text, audiopath_and_text[0])
|
|
|
|
def get_text(self, text):
|
|
text_norm = torch.IntTensor(text_to_sequence(text, self.text_cleaners))
|
|
return text_norm
|
|
|
|
def load_conditioning_candidates(self, path):
|
|
candidates = find_files_of_type('img', os.path.dirname(path), qualifier=is_audio_file)[0]
|
|
assert len(candidates) < 50000 # Sanity check to ensure we aren't loading "related files" that aren't actually related.
|
|
if len(candidates) == 0:
|
|
print(f"No conditioning candidates found for {path} (not even the clip itself??)")
|
|
raise NotImplementedError()
|
|
# Sample with replacement. This can get repeats, but more conveniently handles situations where there are not enough candidates.
|
|
related_clips = []
|
|
for k in range(self.conditioning_candidates):
|
|
rel_clip = load_audio(random.choice(candidates), self.sample_rate)
|
|
gap = rel_clip.shape[-1] - self.conditioning_length
|
|
if gap < 0:
|
|
rel_clip = F.pad(rel_clip, pad=(0, abs(gap)))
|
|
elif gap > 0:
|
|
rand_start = random.randint(0, gap)
|
|
rel_clip = rel_clip[:, rand_start:rand_start+self.conditioning_length]
|
|
related_clips.append(rel_clip)
|
|
return torch.stack(related_clips, dim=0)
|
|
|
|
def __getitem__(self, index):
|
|
try:
|
|
tseq, wav, text, path = self.get_wav_text_pair(self.audiopaths_and_text[index])
|
|
cond = self.load_conditioning_candidates(self.audiopaths_and_text[index][0]) if self.load_conditioning else None
|
|
except:
|
|
print(f"error loading {self.audiopaths_and_text[index][0]}")
|
|
return self[index+1]
|
|
if wav is None or \
|
|
(self.max_wav_len is not None and wav.shape[-1] > self.max_wav_len) or \
|
|
(self.max_text_len is not None and tseq.shape[0] > self.max_text_len):
|
|
# Basically, this audio file is nonexistent or too long to be supported by the dataset.
|
|
# It's hard to handle this situation properly. Best bet is to return the a random valid token and skew the dataset somewhat as a result.
|
|
#if wav is not None:
|
|
# print(f"Exception {index} wav_len:{wav.shape[-1]} text_len:{tseq.shape[0]} fname: {path}")
|
|
rv = random.randint(0,len(self)-1)
|
|
return self[rv]
|
|
orig_output = wav.shape[-1]
|
|
orig_text_len = tseq.shape[0]
|
|
if not self.needs_collate:
|
|
if wav.shape[-1] != self.max_wav_len:
|
|
wav = F.pad(wav, (0, self.max_wav_len - wav.shape[-1]))
|
|
if tseq.shape[0] != self.max_text_len:
|
|
tseq = F.pad(tseq, (0, self.max_text_len - tseq.shape[0]))
|
|
res = {
|
|
'real_text': text,
|
|
'padded_text': tseq,
|
|
'text_lengths': torch.tensor(orig_text_len, dtype=torch.long),
|
|
'wav': wav,
|
|
'wav_lengths': torch.tensor(orig_output, dtype=torch.long),
|
|
'filenames': path
|
|
}
|
|
if self.load_conditioning:
|
|
res['conditioning'] = cond
|
|
return res
|
|
return tseq, wav, path, text, cond
|
|
|
|
def __len__(self):
|
|
return len(self.audiopaths_and_text)
|
|
|
|
|
|
class TextMelCollate():
|
|
""" Zero-pads model inputs and targets based on number of frames per step
|
|
"""
|
|
def __call__(self, batch):
|
|
"""Collate's training batch from normalized text and wav
|
|
PARAMS
|
|
------
|
|
batch: [text_normalized, wav, filename, text]
|
|
"""
|
|
# Right zero-pad all one-hot text sequences to max input length
|
|
input_lengths, ids_sorted_decreasing = torch.sort(
|
|
torch.LongTensor([len(x[0]) for x in batch]),
|
|
dim=0, descending=True)
|
|
max_input_len = input_lengths[0]
|
|
|
|
text_padded = torch.LongTensor(len(batch), max_input_len)
|
|
text_padded.zero_()
|
|
filenames = []
|
|
real_text = []
|
|
conds = []
|
|
for i in range(len(ids_sorted_decreasing)):
|
|
text = batch[ids_sorted_decreasing[i]][0]
|
|
text_padded[i, :text.size(0)] = text
|
|
filenames.append(batch[ids_sorted_decreasing[i]][2])
|
|
real_text.append(batch[ids_sorted_decreasing[i]][3])
|
|
c = batch[ids_sorted_decreasing[i]][4]
|
|
if c is not None:
|
|
conds.append(c)
|
|
|
|
# Right zero-pad wav
|
|
num_wavs = batch[0][1].size(0)
|
|
max_target_len = max([x[1].size(1) for x in batch])
|
|
|
|
# include mel padded and gate padded
|
|
wav_padded = torch.FloatTensor(len(batch), num_wavs, max_target_len)
|
|
wav_padded.zero_()
|
|
output_lengths = torch.LongTensor(len(batch))
|
|
for i in range(len(ids_sorted_decreasing)):
|
|
wav = batch[ids_sorted_decreasing[i]][1]
|
|
wav_padded[i, :, :wav.size(1)] = wav
|
|
output_lengths[i] = wav.size(1)
|
|
|
|
res = {
|
|
'padded_text': text_padded,
|
|
'text_lengths': input_lengths,
|
|
'wav': wav_padded,
|
|
'wav_lengths': output_lengths,
|
|
'filenames': filenames,
|
|
'real_text': real_text,
|
|
}
|
|
if len(conds) > 0:
|
|
res['conditioning'] = torch.stack(conds)
|
|
return res
|
|
|
|
|
|
if __name__ == '__main__':
|
|
batch_sz = 8
|
|
params = {
|
|
'mode': 'nv_tacotron',
|
|
'path': ['Z:\\bigasr_dataset\\libritts\\test-clean_list.txt'],
|
|
'fetcher_mode': ['libritts'],
|
|
'phase': 'train',
|
|
'n_workers': 0,
|
|
'batch_size': batch_sz,
|
|
'needs_collate': True,
|
|
'max_wav_length': 256000,
|
|
'max_text_length': 200,
|
|
'sample_rate': 22050,
|
|
'load_conditioning': True,
|
|
}
|
|
from data import create_dataset, create_dataloader
|
|
|
|
ds, c = create_dataset(params, return_collate=True)
|
|
dl = create_dataloader(ds, params, collate_fn=c)
|
|
i = 0
|
|
m = None
|
|
for i, b in tqdm(enumerate(dl)):
|
|
if i > 5:
|
|
break
|
|
w = b['wav']
|
|
for ib in range(batch_sz):
|
|
print(f'{i} {ib} {b["real_text"][ib]}')
|
|
torchaudio.save(f'{i}_clip_{ib}.wav', b['wav'][ib], ds.sample_rate)
|
|
for c in range(3):
|
|
torchaudio.save(f'{i}_clip_{ib}_cond{c}.wav', b['conditioning'][ib, c], ds.sample_rate)
|